

Huntington Power Plant

6 miles west of Huntington, Utah on Hwy. 31 P.O. Box 680 Huntington, Utah 84528

July 21, 2016

Mr. Bryce Bird, Director Utah Department of Environmental Quality Division of Air Quality 195 North 1950 West P. O. Box 144820 Salt Lake City, Utah 84114-4820

Attn: Mr. Norm Erikson

RE: 2016 Unit 1 RATA Report

Dear Mr. Bird,

The Annual Source Emission Test Reports, or Relative Accuracy Test Audits (RATAs) of the Continuous Emissions Monitoring Systems (CEMs) in service at the PacifiCorp Huntington Plant Unit 1 have been completed per the specifications found in 40 CFR Part 60 and 75. The mid-, and high-load Flow RATAs, along with the Gas and Mercury RATAs were conducted June 29, 2016 on Unit 1.

Enclosed is the RATA report for the Huntington Plant Unit 1 Flow, Gas, and Mercury CEMs.

I am authorized to make this submission on behalf of the owners and operators of the affected source or affected units for which the submission is made. I certify under penalty of the law that I have personally examined, and am familiar with, the statements and information submitted in this document and its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

Should you have any questions or concerns, please contact Richard Neilson at (435) 687-4334.

Sincerely,

Darrell J. Cunningham

Managing Director -Huntington Plant

Responsible Official

Enclosures: "Emissions Testing Report for PacifiCorp Huntington Unit 1"

cc:

Director - EPA Region VIII w/enclosure Richard Neilson — Huntington Plant w/ enclosures Dave Barnhisel — NTO w/o enclosures Frank Zampedri – NTO w/o enclosures

Emissions Testing Report for
PacifiCorp
Huntington Unit 1
Huntington, Utah

Test Dates: June 28 & 29, 2016

Project Code PC16-0031

Office (303) 495-3936 Toll Free (800) 984-9883 Fax (888) 605-0243 www.stacktest.us

Certification Statement

I certify that all field data were acquired under my direction in accordance with a system designed to assure data quality. Based on reasonable inquiry, the information submitted is to the best of my knowledge true, accurate and complete.

Andrew Bruning

Senior Project Manager

Emissions Measurement Company

I certify that this document and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on reasonable inquiry, the information submitted is to the best of my knowledge true, accurate and complete.

Matthew Parks

Technical Director

Emissions Measurement Company

Introduction

EMCo was contracted by PacifiCorp to conduct source testing services at the Huntington Power Plant near Huntington, Utah. The Huntington Plant comprises two pulverized coal-fired boilers, each equipped with low-NOx burners and overfire air for nitrogen oxides (NOx) control, a flue gas desulfurization (FGD) scrubber for sulfur dioxide (SO_2) control and pulse-jet fabric filters for PM control. In accordance with Utah Department of Environmental Quality (UDEQ) Operating Permit 1501001004, the Unit #1 exhaust stack is equipped with Continuous Emission Monitoring Systems (CEMS) to quantify carbon dioxide (SO_2), sulfur dioxide (SO_2) and nitrogen oxides (SO_2) emissions. Each unit is also equipped with a CEMS to quantify carbon monoxide (SO_2) emissions. Monitoring system information is given in the table below.

Monitor Location	Parameter	Monitor Make /Model	Part 75 Monitor ID
	Flow	Teledyne Monitor Labs Model 150	105
	CO ₂	Thermo Fisher Model 410i	113
Huntington	SO ₂	Thermo Fisher Model 43i	111
Unit 1	NO _x	Thermo Fisher Model 42i	112
	CO	Thermo Fisher Model 48i	
	Hg	Thermo Fisher Model 80i	

Testing was conducted to satisfy state and federal quality assurance requirements. Contact information for the project is listed in the table below.

Contact	Affiliation	Telephone	E-mail
Frank Zampedri	PacifiCorp	(801) 220-2169	frank.zampedri@pacificorp.com
Environmental Analyst	Pacificorp	(801) 220-2109	irank.zampedri@pacificorp.com
Richard Neilson	PacifiCorp	(435) 687-4334	richard.neilson@pacificorp.com
Environmental Engineer	Pacificorp	(455) 067-4554	nchard.nelison@pacincorp.com
Norm Erikson	LIDEO	(901) 526 4062	novikson Qutah gov
Environmental Scientist	UDEQ	(801) 536-4063	nerikson@utah.gov
Andrew Bruning	EMCo	(303) 810-2168	ahruning@stacktost us
Senior Project Manager	EIVICO	(303) 810-2168	abruning@stacktest.us

Scope of Work

Relative accuracy test audits (RATAs) were performed in accordance with $\underline{40~CFR~Part~75}$ on the Unit #1 Exhaust CEMS. RATA testing was performed at high load to determine the relative accuracy of the Volumetric Flow Rate, CO_2 , SO_2 , NO_x and Hg CEMS in accordance with the annual RATA requirements of $\underline{40~CFR~Part~75~Appendix~B,~§2.3.1.2(a)}$. Volumetric Flow Rate RATA testing was also performed at mid load. RATA testing was also performed in accordance with $\underline{40~CFR~Part~60}$ on the Unit #1 SO_2 , SO_2 , SO_3 and SO_3 and SO_3 . The details of each test are given in the table below.

Source	Location	Regulation	Test Type	Load Level*	Parameter(s)
Huntington Unit 1	Outlet	40 CFR Part 75	RATA	High	Hg (μg/wscm)
*High Load is defined	as 408-520 MV	Vg at Unit #1, and Mid I	Load is defined as	324-408 MWg.	
Abbreviations: μg/wscm: micrograms	s per wet stand	ard cubic meter			

Testing Methods

EMCo used the following EPA Reference Methods for the testing program. No deviations from the Reference Methods were noted. All RATAs consisted of at least nine test runs.

Source	Parameter	EPA Reference Methods	Test Runs/Duration
Huntington Unit 1	Hg (μg/wscm)	30B	9 @ 60 minutes

Project PC16-0031: Huntington Unit 1 Hg RATA Page 2 of 52

Testing Location

The Huntington Unit 1 exhaust sampling location consists of a vertical, circular stack with an interior diameter of 323.3 inches and four orthogonal sampling ports located 9.9 diameters downstream and 8.2 diameters upstream of the nearest flow disturbances.

Prior to commencing the RATA, pollutant gas stratification testing was performed across a grid of 12 points determined using EPA Method 1 in accordance with $\underline{40}$ CFR Part 60, Appendix B, PS2 §8.1.3.2 and $\underline{40}$ CFR Part 75, Appendix A, §6.5.6.1. Stratification testing was performed for two minutes per traverse point in accordance with $\underline{40}$ CFR Part 75, Appendix A, §6.5.6.1(c). As diluent (CO₂) and pollutant (NO_x or SO₂) concentrations were within 5% of their mean concentrations, mercury RATA testing was performed at a single point in the stack as allowed by §8.1.3.5 of Method 30A. See the schematic below.

Stratification Test Diagram	
Unit #	1
Diameter (D)	323.3"
Upstream Distance (A)	>220'
Downstream Distance (B)	>266′
Sample Point Distances from	n Stack Wall
Traverse Point 1	14.1"
Traverse Point 2	47.3"
Traverse Point 3	95.7"

Test Results

The results of the testing program are given in the tables below. Detailed test results are located in Appendix A, along with sample calculations for all computed values.

RATA R	ton Unit 1	ary (6/29/201	6)						
D #	Chart Times	Chan Time		Hg (μg/wsci	m)	Hg (lb/TBtu)			
Run #	Start Time	Stop Time	RM	CEM	Difference	RM	CEM	Difference	
1	9:05	10:05	0.031	0.323	-0.292	0.032	0.331	-0.299	
2	10:13	11:13	0.027	0.205	-0.178	0.028	0.209	-0.181	
3	11:18	12:18	0.020	0.204	-0.184	0.021	0.212	-0.191	
4	5:51	6:51	0.021	0.158	-0.137	0.022	0.165	-0.143	
5	6:54	7:54	0.025	0.142	-0.117	0.026	0.147	-0.121	
6	7:59	8:59	0.021	0.147	-0.126	0.022	0.155	-0.133	
7	9:02	10:02	0.020	0.146	-0.126	0.021	0.153	-0.132	
8	10:05	11:05	0.020	0.161	-0.141	0.021	0.170	-0.149	
9	11:08	12:08	0.030	0.154	-0.124	0.032	0.164	-0.132	
		Average	0.024	0.182	-0.158	0.025	0.190	-0.165	
		Relative Ac	curacy (RN	lavg-CEMavg	+ CC) = 0.2		n/a		
		40 CFR Part 63	<u>3</u> Limit (RN	1avg-CEMavg	(+ CC) ≤ 0.5		n/a		

Testing Equipment

All testing equipment was housed in a climate-controlled mobile analytical laboratory custom-designed and built by EMCo. All required quality assurance tests were performed as required by the applicable Reference Methods. Detailed equipment descriptions are given in the table below.

Parameter	Equipment	EPA Reference Methods
	Chilled Impinger Train	
Exhaust Gas Moisture Content (H ₂ O)	Dry gas meter	4
	Gravimetric analysis	
	Heated probe	
Moroury (Hg)	Sorbent traps	30B
Mercury (Hg)	Dry gas meters	306
	Ohio Lumex 915+ Mercury Analyzer	

Method 30B Quality Assurance

All on-site mercury analysis was performed by a certified Ohio-Lumex operator (see Appendix E). All QA/QC tests were performed as required by Method 30B. Prior to sampling, the Ohio Lumex RA-915+ was calibrated using certified aqueous mercury standards of 5, 10, 50, 100 and 500 nanograms (ng) to create a second-order calibration curve. NIST certificates for the calibration standards are included in Appendix E. Following initial calibration, the calibration curve was challenged with one Independent Calibration Standard of 500 ng. In cases where the observed mercury sample mass was less than the lowest point on the calibration curve (5 ng), mercury masses were calculated using a low-level response factor in accordance with §11.3 of Method 30B. Continuing Calibration Verification Standards (CCVSs) were analyzed following three test runs at each stack. Sorbent tubes spiked with 50 ng of elemental mercury were used on three RATA runs at each stack to fulfill the requirement for Field Spike Recovery tests; as required by Method 30B, spike recovery was calculated as the average of three runs. QA/QC results are summarized in the table below. Detailed analytical results are appended in Appendix A of this report.

Method 30B QA Test	Acceptance Criteria	Actual Value (Unit 1)
Spectrometer Multipoint Calibration	Each calibration point within ±10% of actual value	Maximum = 8.0%
Calibration	Calibration Curve R ² ≥0.99	$R^2 = 1.00$
Independent Calibration Standard	Within ±10% of actual value	Difference = 2.6%
Continuing Calibration Verification Standard (CCVS)	Within ±10% of actual	Maximum = 4.1%
Paired Trap Agreement	Relative Deviation ≤ 20%	Maximum RD = 9.9%
Field Spike Recovery	85% ≤ Average ≤ 115%	Average = 100%

Project PC16-0031: Huntington Unit 1 Hg RATA Page 4 of 52

Test Details

Mercury testing was performed using EPA Method 30B. Test run duration was determined in accordance with Section 8.2.5 of Method 30B as a function of minimum sample mass, target sample volume and sample flow rate. Each test run consisted of withdrawing samples of stack gas through paired sorbent tubes, through heated stainless steel probes, through paired moisture removal systems, and through dual calibrated dry gas meters. Following each test run, the sorbent traps were removed from the sample probes, capped to avoid media loss or contamination, and transported to EMCo's mobile laboratory for analysis. Samples were analyzed in accordance with EPA Method 30B using an Ohio Lumex RA-915+ differential atomic absorption spectrometer. All Quality Assurance requirements of Method 30B were strictly followed. At each stack, three spiked sorbent traps were analyzed on-site in accordance with Section

8.2.6 of Method 30B. Following analysis, the Relative Deviation of the mercury masses from each paired sample were evaluated for acceptability. The mercury mass from each trap was combined with the corresponding volume of stack gas for the test run, corrected for stack gas moisture content (determined during each run using EPA Method 4; see below), and reported as micrograms of mercury per wet standard cubic meter (μ g/wscm). Mercury concentrations were compared to CEMS data from the sampling period to determine the relative accuracy of the CEMS.

Stack gas moisture content was determined in accordance with EPA Method 4. Method 4 sample runs were performed at each unit to confirm saturated conditions. A sample of exhaust gas was withdrawn from the outlet at a constant flow rate, transported through a stainless steel probe, through a series of chilled glass impingers containing known masses of water or silica gel, and through a calibrated dry gas meter. (See Figure 4-1 at right.) The mass of condensed moisture was determined gravimetrically following each run, and combined with the volume of gas collected to calculate stack gas moisture content.

Measured moisture content was above saturation for each test run. Calculated saturated moisture content was used to correct all mercury and flow RATA runs.

Appended Information

Supporting data for this testing program are included as follows.

- Data Reduction Spreadsheets
- Sample Calculations
- Field Datasheets
- CEMS Data
- Mercury Calibration Standard Certificates
- Dry Gas Meter Pre-Test and Post-Test Calibrations
- Reference Meter Calibration Certificate
- AETB Certification

Project PC16-0031: Huntington Unit 1 Hg RATA Page 6 of 52

Project PC16-0031 Appendix C: Mercury Testing

Data Reduction Spreadsheets
Sample Calculations
Field Datasheets
CEMS Data

Mercury Calibration Standard Certificates

Dry Gas Meter Pre-Test and Post-Test Calibrations

Reference Meter Calibration Certificate

PC16-31 PacifiCorp Huntington Unit 1 6/29/2016

Parameter: Hg (µg/wscm)

Run#	Start Time	End Time	Load	RM	CEM	Difference	Used?
1	9:05	10:05	477	0.031	0.323	-0.292	Х
2	10:13	11:13	478	0.027	0.205	-0.178	Х
3	11:18	12:18	476	0.020	0.204	-0.184	х
4	5:51	6:51	481	0.021	0.158	-0.137	Х
5	6:54	7:54	482	0.025	0.142	-0.117	Х
6	7:59	8:59	482	0.021	0.147	-0.126	х
7	9:02	10:02	483	0.020	0.146	-0.126	х
8	10:05	11:05	480	0.020	0.161	-0.141	Х
9	11:08	12:08	481	0.030	0.154	-0.124	Х
10							
11							
12							
Average			480	0.024	0 182	-0.158	

Number of Runs:	9
T-value	2.30
Standard Deviation	0.056
Confidence Coefficient	0.043
Relative Accuracy (%RM)	841.399
Limits	

Parameter	: Hg (lb/TBtu)			Fc =	1800				
				RM	RM	RM	CEM	Difference	
				Hg	CO_2	Hg	Hg	Hg	
Run#	Start Time	End Time	Load	(µg/wscm)	(%vw)	(lb/Tbtu)	(lb/Tbtu)	(lb/Tbtu)	Used?
1	9:05	10:05	477	0.031	11.0	0.032	0.331	-0.299	х
2	10:13	11:13	478	0.027	11.0	0.028	0.209	-0.181	x
3	11:18	12:18	476	0.020	10.8	0.021	0.212	-0.191	х
4	5:51	6:51	481	0.021	10.7	0.022	0.165	-0.143	x
5	6:54	7:54	482	0.025	10.8	0.026	0.147	-0.121	x
6	7:59	8:59	482	0.021	10.6	0.022	0.155	-0.133	х
7	9:02	10:02	483	0.020	10.7	0.021	0.153	-0.132	х
8	10:05	11:05	480	0.020	10.6	0.021	0.170	-0.149	х
9	11:08	12:08	481	0.030	10.5	0.032	0.164	-0.132	х
10									
11									
12									
Average			480	0.024	10.7	0.025	0.190	-0.165	

Number of Runs:	9
T-value	2.306
Standard Deviation	0.056
Confidence Coefficient	0.043
Relative Accuracy (%RM)	868.5%

PC16-31 PacifiCorp Huntington Unit 1 6/28/2016

EPA Method 30B §11.1: Calibration

lg Mass (ng)	Area Counts	Calculated Hg Mass (ng)	% Difference	
5	1250	4.7	5.2%	
10	2370	10.5	4.9%	
50	9980	49.6	0.8%	
100	19800	100.2	0.2%	
500	96500	500.0	0.0%	
Polynomial	Regression		Low-Level Response	Factor
Curve: y =	7.12E-10x^2 + 0.00	51x + -1.6728	Hg Mass (ng) =	2.5
A ₂ =	7.12E-10		Area Counts =	474
A ₁ =	0.0051		Response Factor =	189.6
B =	-1.6728			
$R^2 =$	1.00			

EPA Method 30B §11.1: Independent Calibration Standard Expected Value (ng) 500

Expected value (lig)	500
Area Counts	95800
Measured Value (ng)	496.3
% Difference	0.7%
Limit	10%

EPA Method 30B §11.4: Continuing Calibration Verification Standard

Run#	Expected Value (ng)	Area Counts	Measured Value (ng)	% Difference
3	500	92600	479.5	4.1%

PC16-31 PacifiCorp Huntington Unit 1 6/28/2016

EPA Method 30B Sample Analysis

Sample ID	1a	1b	2a	2b	3a	3b
Inputs						
Area Counts (Section 1)	437	502	439	367	290	297
Area Counts (Section 2)	79	21	-8	148	-70	28
Spike Mass (ng)	0	0	0	0	0	0
Calculations						
Section 1 Hg Mass (ng)	2.3	2.6	2.3	1.9	1.5	1.6
Section 2 Hg Mass (ng)	0.0	0.0	0.0	0.0	0.0	0.0
Total Hg Mass less Spike (ng)	2.3	2.6	2.3	1.9	1.5	1.6
Breakthrough (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Volume of Sample (dscm)	0.070	0.070	0.069	0.069	0.069	0.069
Hg Concentration (µg/dscm)	0.03	0.04	0.03	0.03	0.02	0.02
Relative Deviation (%)	7.0	0%	8.8	3%	1.4%	
Measured Spike Concentration (μg/dscm)	n,	/a	n,	/a	n,	/a
Spike Recovery (%)	n/a	n/a	n/a	n/a	n/a	n/a
Moisture Concentration (%/100)	0.117	0.117	0.128	0.128	0.120	0.120
Corrected Hg Concentration (µg/wscm)	0.03	0.03	0.03	0.02	0.02	0.02

 Average Spike Recovery (%)
 n/a
 (85-115%)

 Average Hg Concentration >1 μg/dscm?
 N
 85-115%)

 Breakthrough Limit =
 20%
 20%

EPA Method 30B §11.1: Calibration

Hg Mass (ng)	Area Counts	Calculated Hg Mass (ng)	% Difference
5	944	5.0	0.4%
10	2020	10.8	8.0%
50	9040	48.5	3.0%
100	18800	100.7	0.7%
500	94400	500.0	0.0%

Polynomial Regression

Curve: $y = -8.40E-10x^2 + 0.0054x + -0.0569$ $A_2 = -8.40E-10$ $A_1 = 0.0054$

B = -0.0569 $R^2 = 1.00$

Low-Level Response Factor

Hg Mass (ng) = Area Counts = 451

Response Factor = 180.4

EPA Method 30B §11.1: Independent Calibration Standard

Expected Value (ng)	500
Area Counts	96900
Measured Value (ng)	513.0
% Difference	2.6%
Limit	10%

EPA Method 30B §11.4: Continuing Calibration Verification Standard

<u>Run #</u>	Expected Value (ng)	Area Counts	Measured Value (ng)	% Difference
6	500	92500	490.1	2.0%
9	500	97800	517.7	3.5%

PC16-31 PacifiCorp Huntington Unit 1 6/29/2016

EPA Method 30B Sample Analysis

Sample ID	4a	4b	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b
Inputs												
Area Counts (Section 1)	245	236	392	289	298	191	9560	218	9610	237	9650	285
Area Counts (Section 2)	86	72	12	60	50	96	82	63	20	59	135	135
Spike Mass (ng)	0	0	0	0	0	0	50	0	50	0	50	0
Calculations												
Section 1 Hg Mass (ng)	1.4	1.3	2.2	1.6	1.7	1.1	51.3	1.2	51.5	1.3	51.7	1.6
Section 2 Hg Mass (ng)	0.4	0.3	0.0	0.3	0.2	0.5	0.4	0.3	0.1	0.3	0.7	0.7
Total Hg Mass less Spike (ng)	1.8	1.6	2.2	1.9	1.9	1.5	1.6	1.5	1.6	1.6	2.4	2.2
Breakthrough (%)	29.9%	25.2%	0.4%	16.6%	12.8%	43.4%	0.7%	23.3%	0.1%	19.8%	1.3%	42.3%
Volume of Sample (dscm)	0.070	0.070	0.070	0.070	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069
Hg Concentration (μg/dscm)	0.03	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.04	0.03
Relative Deviation (%)	3.	5%	7.0	6%	9.9	9%	4.9	9%	0.3	1%	3.5	%
Measured Spike Concentration (μg/dscm)	n	/a	n	/a	n,	/a	0.7	73	0.7	73	0.7	73
Spike Recovery (%)	n/a	n/a	n/a	n/a	n/a	n/a	100.31%	n/a	100.02%	n/a	100.33%	n/a
Moisture Concentration (%/100)	0.135	0.135	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124
Corrected Hg Concentration (µg/wscm)	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03

 Average Spike Recovery (%)
 100.2%
 (85-115%)

 Average Hg Concentration >1 μg/dscm?
 N

 Average Hg Concentration >0.5 μg/dscm?
 N

 Average Hg Concentration ≤0.1 μg/dscm?
 Y

Breakthrough Limit = n/a

Relative Deviation Limit = 20% or +/-0.2

PC16-31 PacifiCorp Huntington Unit 1 6/28/2016

	Start	Run # t Time Time	9:	1 05 :05	2 10:13 11:13		3 11:18 12:18	
EPA Method 30B Meter Data			Α	В	Α	В	Α	В
	Inputs							
P_{bar}	Barometric Pressure ("Hg)		23.77	23.77	23.77	23.77	23.77	23.77
V_{m}	Volume of Stack Gas Collected (L)		90.017	90.036	90.005	90.026	90.003	90.018
Υ	Meter Calibration Factor (unitless)		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$T_{\rm m}$	Temperature at Gas Meter (°F)		78	79	83	85	86	88
	Calculations							
V_{m}	Volume of Stack Gas Collected (dcm)		0.090017	0.090036	0.090005	0.090026	0.090003	0.090018
P_{bar}	Absolute Pressure at Gas Meter (mmHg)		603.69	603.69	603.69	603.69	603.69	603.69
T _m	Absolute Temperature at Gas Meter (K)		299	299	301	303	303	304
$V_{m(std)}$	Sample Gas Volume (dscm)		0.07	0.07	0.07	0.07	0.07	0.07

PC16-31 PacifiCorp Huntington Unit 1 6/29/2016

	Run # Start Time Stop Time	5:	4 51 51		5 54 54	7:	5 59 59	9: 10:	7 02 :02	10 11		11	9 :08 :08
EPA Meth	od 30B Meter Data	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	Inputs												
P _{bar}	Barometric Pressure ("Hg)	23.68	23.68	23.68	23.68	23.68	23.68	23.68	23.68	23.68	23.68	23.68	23.68
V _m	Volume of Stack Gas Collected (L)	90.011	90.025	90.033	90.038	90.024	90.013	90.058	90.022	90.026	90.203	90.031	90.044
Υ	Meter Calibration Factor (unitless)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
T_{m}	Temperature at Gas Meter (°F)	75	77	77	78	82	85	86	87	86	87	87	88
	Calculations												
V _m	Volume of Stack Gas Collected (dcm)	0.090011	0.090025	0.090033	0.090038	0.090024	0.090013	0.090058	0.090022	0.090026	0.090203	0.090031	0.090044
P_{bar}	Absolute Pressure at Gas Meter (mmHg)	601.40	601.40	601.40	601.40	601.40	601.40	601.40	601.40	601.40	601.40	601.40	601.40
T _m	Absolute Temperature at Gas Meter (K)	297	298	298	299	301	303	303	304	303	304	304	304
$V_{m(std)}$	Sample Gas Volume (dscm)	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07

PC16-31 PacifiCorp Huntington Unit 1 6/28/2016

		Run # Start Time	1 9:05	2 10:13	3 11:18
FDA 84-4	had 4 Date	Stop Time	9:41	10:49	11:56
EPA IVIET	hod 4 Data Inputs				
P _{bar}	Barometric Pressure ("Hg)		23.77	23.77	23.77
bui	Stack Static Pressure ("H ₂ O)		-2.4	-2.4	-2.4
	Stack Gas Temperature (F)		116	117	117
V_{lc}	Volume of Water Condensed (mL)		62.1	68.2	69.8
V_{m}	Volume of Stack Gas Collected (dcf)		28.419	28.558	31.612
Υ	Meter Calibration Factor (unitless)		0.9966	0.9966	0.9966
ΔΗ	Pressure Differential Across Orifice ("H₂O)		1.8	1.8	1.8
T _m	Temperature at Gas Meter (°F)		82	87	90
	Calculations				
P_{m}	Absolute Pressure at Gas Meter ("Hg)		23.90	23.90	23.90
T _m	Absolute Temperature at Gas Meter (°R)		542	547	550
$V_{wc(std)}$	Volume of Water Condensed (scf)		2.92	3.21	3.28
$V_{m(std)}$	Sample Gas Volume (dscf)		22.03	21.94	24.15
	Stack Gas Temperature (C)		47	47	47
B_{wssat}	Saturated Moisture Content (%/100)		0.131	0.134	0.134
B_{ws}	Actual Stack Gas Moisture Content (%/100)		0.117	0.128	0.120
	Moisture Content Used (%/100)		0.117	0.128	0.120

PC16-31 PacifiCorp Huntington Unit 1 6/29/2016

		Run#	4	5	6	7	8	9
		Start Time	5:51	6:54	7:59	7:59	7:59	11:08
		Stop Time	6:24	7:30	8:35	8:35	8:35	11:44
EPA Met	thod 4 Data							
	Inputs							
P_{bar}	Barometric Pressure ("Hg)		23.68	23.68	23.68	23.68	23.68	23.68
	Stack Static Pressure ("H ₂ O)		-2.4	-2.4	-2.4	-2.4	-2.4	-2.4
	Stack Gas Temperature (F)		117	114	114	114	114	114
V_{lc}	Volume of Water Condensed (mL)		75.6	70.1	73	73	73	72.4
$V_{\rm m}$	Volume of Stack Gas Collected (dcf)		29.479	28.515	31.297	31.297	31.297	29.845
Υ	Meter Calibration Factor (unitless)		0.9966	0.9966	0.9966	0.9966	0.9966	0.9966
ΔΗ	Pressure Differential Across Orifice ("H ₂ O)		1.8	1.8	1.8	1.8	1.8	1.8
T_{m}	Temperature at Gas Meter (°F)		82	82	84	84	84	83
	Calculations							
P_{m}	Absolute Pressure at Gas Meter ("Hg)		23.81	23.81	23.81	23.81	23.81	23.81
T_{m}	Absolute Temperature at Gas Meter (°R)		542	542	544	544	544	543
$V_{wc(std)}$	Volume of Water Condensed (scf)		3.56	3.30	3.44	3.44	3.44	3.41
$V_{m(std)}$	Sample Gas Volume (dscf)		22.77	22.02	24.08	24.08	24.08	23.01
	Stack Gas Temperature (C)		47	46	46	46	46	46
$B_{\text{ws sat}}$	Saturated Moisture Content (%/100)		0.135	0.124	0.124	0.124	0.124	0.124
B_{ws}	Actual Stack Gas Moisture Content (%/100)		0.135	0.130	0.125	0.125	0.125	0.129
	Moisture Content Used (%/100)		0.135	0.124	0.124	0.124	0.124	0.124
			Saturated	Saturated	Saturated	Saturated	Saturated	Saturated

Sample Calculations

PacifiCorp Huntington Unit 1 6/28/2016 Run #1 Sample Calculations

EPA Method 30B: Determination of Total Vapor Phase Mercury Emissions from Coal-Fired Combustion Sources Using Carbon Sorbent Traps (40 CFR Part 60, Appendix A-8)

Variable	Value	Definition	Unit of Measurement
P _{bar}	23.77	Barometric Pressure	in. Hg
P _m	604	Absolute Pressure at Gas Meter	mmHg
t _m	78	Temperature at Gas Meter	°F
T _m	299	Absolute Temperature at Gas Meter	К
Υ	1.000	Meter Calibration Factor	Unitless
V _m	90.017	Volume of Stack Gas Collected	L
V _m	0.0900	Volume of Stack Gas Collected	dcm
T _{std}	293	Standard Temperature	К
P _{std}	760	Standard Pressure	mmHg
V _{m(std)}	0.070	Sample Gas Volume	dscm
A ₂	7.12E-10	Coefficient from Calibration Curve	unitless
A ₁	0.0051	Coefficient from Calibration Curve	unitless
b	-1.6728	Y intercept of Calibration Curve	unitless
AC1	437	Area Counts from Tube Section 1	unitless
AC2	79	Area Counts from Tube Section 2	unitless
RF	189.6	Low-Level Response Factor	Unitless
m ₁	2.3	Hg mass from Tube Section 1	nanograms
m ₂	0.0	Hg mass from Tube Section 2	nanograms
В	0.0%	Breakthrough	percent
C _a	0.03	Hg Concentration, Sorbent Trap A	μg/dscm
C _b	0.04	Hg Concentration, Sorbent Trap B	μg/dscm
RD	7.0%	Relative Deviation between Traps A and B	percent
B _{ws}	0.117	Stack Gas Moisture Content (From EPA Method 4)	%/100
C _{w(a)}	0.03	Hg Concentration corrected for moisture	μg/wscm
C _{w(b)}	0.03	Hg Concentration corrected for moisture	μg/wscm
C _{w(avg)}	0.03	Hg Concentration corrected for moisture	μg/wscm

$$P_{m} = P_{bar} (25.3971 \text{ mmHg/in.Hg})$$

= 23.77 (25.3971)

= 603.69 mmHg

$$T_m = 273.15 + ((t_m-32)/1.8)$$

= 299 K

 $V_{\rm m} = (0.001)L$

= (0.001) 90.017

= 0.0900 dcm

$$V_{m(std)} = V_m \times Y \times T_{std} \times P_m$$

$$T_m \times P_{std}$$

= 0.070 dscm

Run #1 Sample Calculations

= 0.03 ug/wscm

Field Datasheets

EPA Method 30B Analysis Datasheet

client Pacificorp

Facility/Unit Huntington Unit 1

CCVS

	Initial Cali	<u>bration</u>	
	Date	6-28	6-29
	Hg (ng)	Area Counts	Area Counts
	5	1250	1944
	10	2370	2020
1	50	9980	9040
1	100	19800	18800
Ī	. 500	96500	94400
Ţ	500 2 vol	95800]	96900
T	25	475	451
_		474	

Following Run#	Hg (ng)	Area Counts
3	500	92600
16	500	192500
19	500	197800
]	
J		1

-		Ro	un Analyses			
			Area	Counts	Re	esults
Run	D Start Time	Tube #	Section A	Section B	μg/wscm	lb/Tbtu
RIA	905	353334	437	179	003	0.0347
RIB	905	357490	502	21	0.03	00506
RZA	D13	353417	1439	367	10.03	0.0366
R2B	1013	353460	-8 K	71 00	0.62	6.0234
R3A	1118	353254	290	1-70	0.02	0.0234
R3B	11190	353284	297	28	0.02	0.0239
500CCL	15		92600			
RYA	551	353290	245	86	0.02	0.0232
RYB	551	353406	236	72	0.02	
R6A	654	353372	392	12	0.03	00278
R6B	654R	357474	289	60	0.02	·
REA	759E	353388	298	50	002	0.0236
ROB	759	353429	191	96	0.02	
R7A	902	36/394 spile 50	9560	82	002	0.0216
R7B]	902	353315	218	63	0.02	
ROA]	1005	3612765 50 pr /2	29610	20	0.07	0.0218
R&B]	1005	353259	20237	59	0.02	
REGA]			9650	135	003	60327
R96 %	ject/PC16-2031: Hur	ntinggor Unit 1:Hg RATA	285	135	0.03	Page 20 of 52
1				135		1

> Barometric Pressure ("Hg): 33.77 Notes:

Operator: SS

	Ç								Chack Toma	ממבע זפוולו		1160	1		110	0	11	1	1	0/		
							0.00 @ / 3 /	0000	۽ (0	9	2		10	10	2		2	0	Maximum
					2		ck ("H,O @ "Hg):	sck ("H,0 @ "Hg):	Imp. Outlet	Temp (°F)	30.7		X CO	44	()	22	40	200		70	1.5	Maximum
	Post Weight.			0-(%)	(27.2)	CO ₂ (70):	Pre-Test Leak Check ("H,O @ "Hg):	Post-Test Leak Check ("H,O @ "He):	DGM Temp	<u>E</u>	74		70	X	1	700	8/	2	00	80	2	Average
		8			(000)				Sample	Volume (L)	0	300	150	900	7.7	٩	8	バー	00000	2000	70.030	Total
	ht:	1017175	27 / 17		Meter ID; SOS - / / Ryd: COO?)	7 7 0	7	1000	Sample Rate	(Tbm)	1.5		7	15	1/		(.5	1,5	1	101	3	Average
	Initial Weight:	Tran ID.	ı	Run # /	Meter ID:	Chart Time	Start Hine:	Stop Time:	Sample	Time	0	6.2.0	2	OZ/QI	\$E.2\)		20,40	2550	0,700		00	Total
						0000		0.00 @ / 3 :-	Vacuum	("Hg)	8	3		7	0	C	2	7	8	0		Maximùm
					-	eck ("H,O @ "Hg):		18/	Imp. Outlet	lemp(r)	37	5		2	24	1/2		50	\\ \\ \.	V		Maximum
	Post Weight:		0.1%).	221/0/	(%):	Pre-Test Leak Check ("H,O @ "F	Post-Test Leak Check ("U O @ "	The state of the s	dinal help		63	22	13	KS.	7	Sh	100	209	9	75/		Average
		4			3			Samula	Volume (1)			153	- 5%	3	45,	200	1		70,017	710.09	1 2 2 2 2	lotai
	0000	てつつのいい。		Meter ID: 3013-1 4vali	100	5	1001	Sample Rate	(Lpm)	1	3	Û	V	1	Ů	ָּת'	1		(,)	1.5	Average	200
Initial Weight:	Trans	()	Run #	Meter ID: 3	Ctort Time.	Start Hille:	Stop Time:	Sample		,	2	<i>y</i>	07	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.5	9,8	Chris	COCX	30 QC	THE COLUMN	Total	God

Final					7808	(62.1)	
Initial					718.4	Total	
Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

								a del	- Eq.	٦.		
			Vacuum	(#Hg)	50	1	N.	14	4		4	Maximum
7	0.00 @ 15	0.00 @ O.	Imp. Outlet	Temp (°F)	127	07	3	48	65	-	65	Maximum
Yd:090/1 DH®: 1 4/20	v -	Post-Test Leak Check ("H2O @ "Hg):	DGM Temp (*F)	Inlet Outlet	74 1 77	45 . 79	45 36	18 78	46 41		(FB)	Average
			Sample	Volume (ft³)	105035	111.3	119.5	120.8	1335		614.80	Total
	905	136,	Drifice Pressur	ΔH ("H ₂ O)	7.4	9.7	(2)	(4	6-9) 50	Average
RATA Run #	Start Time:	Stop Time:	Sample	Time	0	(0)	20	30	36		36	Total

Meter Box ID: MS

> Operator: 5독 Barometric Pressure ("Hg): 긴국 Notes:

> > Source:

Ć:										Stack Temp	(E)		1	1	\	11	1	/\	1/2	1	//	1/1		// //	
		-		200			17/1/ 0000	K	0.00@ (5%	Vacuum			>	-	-//	//		//	1						Maximum
							Pre-Test Leak Check ("H O @ "u-1).	120 @ 18/	Post-Test Leak Check ("H2O @ "Hg):	Imp. Outlet	Temp (°F)	1	クト	10	2	47	7	2	2/2		47,	6.4	,,,	7	Maximum
	Post Weight				02(%):	CO, (%):	Pre-Test Leak Ch		rost-Test Leak C	DGM Temp	Œ	000	10	200	5	2 スケー	MI	9	ジング	X	ا ج	なり	N. N.		Average
						20-			T	Sample	Volume (L)	7		y Y		30.6	45,	7.5.1	8	7,7	0	70.020	01000	7	Total
۰	ä	11111	3000			Meter ID: 3033 - 1/37d: ,	613	11/2	1	Sample Rate	(Lpm)	ソノ		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.8	N		V.	1	(2)	(.)	1/2	1	Average
	Initial Weight:		rapin:	Run # 7		Meter ID: 3	Start Time: (C)	Stop Time:	1	Sample	ııme	· c	,	0/5		10.201	S	3	94°	Cypie	2000	3	(Je)		lotal
							0.00 @ 75	0.00 @ (A) L	Vacuum	(""")	(81)	<u> </u>		//	1))	11		1/	11			,		Maximum
						f. /lli > 0 llin .	rie-lest Leak Check ("H ₂ O (@ "Hg):	neck ("H ₂ O @ "Hg):	Imp. Outlet	Temp (°F)		7		7	77	7	7			40	1	44	7/	Maximim	MINIMIN
	Post Weight:		100	02[%]:	(%):	Dro Tock Look	בוב-ובאר רבמע רנ	Post-Test Leak Check ("H2O @	DGM Temp	Œ	-	S	00	704	Λ		44	1/4	44	44	100	3	43	Average	202
					000				Sample	Volume (L)	0	}	651	2	300		75,	100	200	K C	9000	0.00	10.005	Total	
-		7746	المراق فروية	I.	7:51/4 Ya: /	1012	11/2		Sample Rate	(Lpm)	7	7	V	1		1	()	, 1	1	ņ	7	7	'n	Average	•
Initial Weight:	0	leap 10:	Run # 7	1	Meter ID: 20(Start Time:	Stop Time	P	Sample	Time			< 7		1000 1000	1	\$5.5C	500 k	2	3500	() ox	3	0	Total	

	Final					848.7	168.2	
	Initial					746.5	Total	
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

RATA Run #			Meter Box ID:	1000			
	6,00		10:0-17(de	LO DHO: 1-DCOLY			
Start Time:	1013		Pre-Test Leak Ch	Pre-Test Leak Check ("H2O @ "Hg):	0.00 @		
Stop Time:	1042		Post-Test Leak C	Post-Test Leak Check ("H2O @ "Hg):	0.00	6	
Sample	Drifice Pressur	Sample	DGM	DGM Temp (°F)	Imp. Outlet	Vacuum	
Time	∆H ("H ₂ O)	Volume (ft³)	Inlet	Outlet	Temp (°F)	("Hg)	
0	1.4	133621	45	5 N	83	ti	
0	\$	140.7	88	833	46	Jr.	
20	1-6	14%(89	78	47	li	
30	6.9	186,3	693	45	2.7	h	
3 S	8-1	16207	93	85	30	m	
	,			×			
36	2	28.558	/	47	V	7	
Total	Average	Total	(*)	Average	Maximum	Maximum	

Operator: 55
Barometric Pressure ("Hg): 23. 7. Notes:

										Stack Temp	(£))		1		//			//	3,		-	4//	
							0.00	000		=	("Hg)			\		1	1,3			11		\		Maximum
							Pre-Test Leak Check ("H,O @ "Hg):	Post-Test Leak Check ("H.O @ "Hall	Imp Outlot	ninp. odnie	Temp (°F)	43		7	-	2	7		C 20	VV	00	J.	28	Maximum
	Post Weight:			0,(%):	CO. /%).	2021/01:	Pre-Test Leak C	Post-Test Leak	DGM Temp	1	(F)	1		4	1,6	8	400	110	22	RA		0,0	486	Average
									Sample	Volumo	יסומונות (ב)	0	1	0,0	ly Opt	5,7	16		00.0	アスク	1	11018	30.06	Total
);;	Trap ID. O. G. L. O. A.C.	20107		3R-14 Yd:	1	9/1	12/22	Sample Rate	(jum)	/IIId-1	(V)			V	7,4	() ()	1	3	13	7	(~)	65	Average
	Initial Weight:	Trap ID:		Kun# U	Meter ID:558-14	Ctort Times.	אמור ווווה:	Stop Time:	· Sample	Time		0	Q.	7	020	2	3530	V.763	2	35.50	5	30,00	00	Total ·
						0.00 @ 1		3	Vacuum	("Hg))/	1		/			//	1	//	1			Maximum
						eck ("H,O @ "Hg);		18	Imp. Outlet	Temp (°F)	12)	1:4	1	S	1, 1	000	P	1	0	12		0 0	Maximum
Doct Moight.	rost weight:		0,(%):	.(%)	2021/8/.	Pre-Test Leak Check ("H,O @ "F	Post-Test Leak Check ("H O @	1.00	dmai lemp	(F)	44		500	14/1	ر م	100	70	×	41	70	20		1	Averáge
								Sample	Volumo	voluine (L)	C	1	150	2001	3	C >17	1	000	13/2		70.07	Jr. 12	300	Total
Ħ	Trap ID: プイス つんい	172/		512-14 Vd: [-173		3	14/4	Sample Rate	(10,0)	(4			1		シー	1	いっ	1	1	Q	1		Average
Initial Weight:	Trap ID: 7		Kun # 3	Meter ID: 2613-1	Start Time.		Stop Time:	Sample	Time		0		S S	1	27	1530		0,000	Sekn	200	090g	3	Total	lotal

	Final					8300	A	(8.69)	
	Initial					760.2	Total		
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total			

			Weter Box ID: /v/	13 /		
RATA Run #			1966 O.PX	156 75 1:0HD.		
Start Time:	1118		Pre-Test Leak C		0.00	
Stop Time:	1156		Post-Test Leak C	Post-Test Leak Check ("H ₂ O @ "Hg):	0.00 @ / 6/	
Sample	Drifice Pressure	Sample	DGM	DGM Temp (°F)	Imp. Outlet	Vacuum
Time	ΔH ("H ₂ O)	Volume (ft³)	Inlet	Outlet	Temp (°F)	("He)
0	(.Q	162.215	82	2000	47	۲
0)	1,4	187	93	1	X	Jh
200	1,4	0/2/	95	A	パル	W
30	124	1969	多ん	SS	12	1
38	1,4	143,437	200	46	1/V	1
					>	
Page			0	.(
23	14	131.612	9	0	14	ľ
of 52	Average	Total	(*)	Average	Maximum	Maximum
				1		

Operator: 55 Barometric Pressure ("Hg): 23. 64 Notes:

Client: Packron EMCo Job #: PC//

Trap 10: 3534C6 O ₂ (%): Run # 4 O ₂ (%): Run # (25) Pre-Test Leak Check ("H ₂ O@"Hg): O ₁ (%): Pre-Test Leak Check ("H ₂ O@"Hg): O ₂ (%): Run # (25) Pre-Test Leak Check ("H ₂ O@"Hg): O ₂ (%): Run # (25) Pre-Test Leak Check ("H ₂ O@"Hg): O ₃ (%): Run # (25) Pre-Test Leak Check ("H ₂ O@"Hg): O ₄ (%): Run # (25) Pre-Test Leak Check ("H ₂ O@"Hg): O ₄ (%): Run # (25) Run	nitial Weight:		Post Weight:			Initial tayou						
Trap 1D: 353 4C6 O2(78): Run # 4 O2(78): Run # 4 O2(78): Run # 4 O2(78): CO2 (78): Run # 4 O2(78): Run # 4 O2(78): Run # 4 O2(78): CO2 (78): Run # 4 O2(78): Run # 4 O2(78): CO2 (78): CO2 (78	70127		rost weight:			Initial Weight:			Post Weight:			
Sample Rate Sample DoSt Test Leak Check ("H ₂ O @"Hg); 0.000 @ /5 Start Time; \$\$\frac{1}{2}\int \frac{1}{2}\int	57000					Trap ID: 35	5340					
Post-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Start Time; SA Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Sample Rate Sample Rate Sample Rate Sample DGM Temp Imp. Outlet Vacuum Sample Sample Rate Sample DGM Temp Imp. Outlet Vacuum Sample Sample Rate Sample DGM Temp Imp. Outlet Vacuum Sample DGM Temp Imp. Outlet Vacuum Volume (1) Pre-Text Leak Check ("H ₂ O @ "Hg); Ox00@ /5 Pre-Text Leak Check ("H ₂ O @ "Hg); O		-	02(%):			Rin#						
Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 75 Start Time; 55 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 55 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 55 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 65 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 65 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 65 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 65 Pre-Test Leak Check ("H ₂ O @ "Hg); 0.00 @ 76 Start Time; 65 Start Time;	2013-1 Ard:	8	CO, (%):			- "	0. 1		0,2(%):			
Sample Rate Sample DGM Temp Imp. Outlet Vacuum Sample Rate Sample DGM Temp Imp. Outlet Vacuum Sample Rate Sample DGM Temp Imp. Outlet Vacuum Valume (L) (F) Temp (F) ("Hg) (Thg)	141		Pro-Toct Lost Ch	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	Meter ID: 30	5-1/5 Yd:		CO ₂ (%):			
Sample Rate	18/		Doct Toct Look C		Z	Start Time:	5 (Pre-Test Leak Ch	eck ("H,O @ "Hg):	0.00	
(Lpm) Volume (L) (F) Temp (*F) ("Hg) Time (Lpm) Volume (L) (F) Temp (*F) ("Hg) 1/5 0 75 57 6 75 57 75 <td< td=""><td>*-</td><td>Cample</td><td>DOM TOTAL</td><td>neck (H₂O (d' Hg):</td><td>C</td><td>Stop Time: 6</td><td>12/</td><td></td><td>Post-Test Leak C</td><td>heck ("H₂O @ "Hg):</td><td>0.00 @ //</td><td></td></td<>	*-	Cample	DOM TOTAL	neck (H ₂ O (d' Hg):	C	Stop Time: 6	12/		Post-Test Leak C	heck ("H ₂ O @ "Hg):	0.00 @ //	
15 0 73 57 0 0 0 0 0 0 0 0 0		Volume (1)	duial lemb	mp. Outlet	Vacuum		Sample Rate	Sample	DGM Temp	Imp. Outlet	Т	Stack Temp
15 16 C 74 45 10 165 67 55 57 10 11 15 16 C 74 45 10 165 155 1	X		St	remp(r)	(Hg)	Time	(Lpm)	Volume (L)	(F)	Temp (°F)		(F)
15 20.0 75 412 10 3020 15 50.1 77 42 10 3020 15 50.0 77 42 10 3020 15 50.0 77 40 10 3050 15 75.0 77 40 10 3050 15 75.0 75 40 10 10.0 11 77 41 10 3050 15 75.0 78 41 10 10.0 11 10.0 11 10.0 15 57 57 57 57 57 57 57 57 57 57 57 57 57		-{	1	20	0	0	68	Ø	23	V	3	1
1.5 45.1 10 10 10 10 10 10 10 10 10 10 10 10 10		0.0	74	45	00	29	1	1	7,		1	1
15 45.1 476 40 10 18.30 1.5 45.0 77 5.0 15 50.0 77 41 10 18.30 1.5 50.0 78 5.0 15 75.0 77 41 10 18.60 1.5 75.0 78 5.1 15 90.011 77 41 10 10.0 1.5 75.0 78 5.1 Average Total Average Maximum Maximum Total Average Total Average Maximum	0 /V	0	K	417	(2000	V		124	2	5	
15 15.0 77 40 10 18.30 15 45.0 77 50 15 75.0 77 41 10 10 10 15 75.0 78 51 15 90.011 77 41 10 10 10 15 75.0 78 51 Average Total Average Maximum Maximum Total Average Total Average Maximum	V	2	1		3	30%	(-)	3		X	0	
15 5.0 77 41 10 x56 1.5 60.0 x6 40 40 15 15.0 0.0 15 15 15.0 15 15.0 15 15.0 15 15.0 15 15.0 15 15.0 15 15.0 15 15.0 15.0		-0,	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	10	16.30	7.5	45.0	1	20	0/	117
5	$\frac{2}{C}$	() () ()	9	70	0/	28(6)	V	000	X	23	0	N/
15 96.01 77 41 70 3060 65 90.025 78 41 41 41 41 42 41 42 42	_	X	7	14	2	1 SECK	V	3 4	36			
1.5 90.011 75 57 10 66 15 90.025 77 57 4/Average Total Average Maximum Maximum Total Average Total Average Maximum	7	96 616	Ĭ,		1	808	1	1,000	6	1/2	70	///
Total Average Maximum Maximum Total Average Total Average Maximum	7	[] (C) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	12/	>	2	0908	53	20.026	78	14	9	V//
Total Average Maximum Maximum Total Average Total Average Maximum		0.01	0.7	0	0/	90	ß	90.025	22	1.5	0/	
	Average	Total	Average	Maximum	Maximum	Total	Average	Total	Average	Maximum	Maximum	

	_	1	1	1	<u> </u>		_	
	Final					844	(22.6)	/
	Initial			,		(55.9	Total	
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

Bun # 4				1 200		
# IIInu			Meter Box ID: VIS -	115-1		
RATA Run #			Yd: O 3966 ∆H®:	PC28.1 :@H∆		
Start Time:	55.(Pre-Test Leak C	20 @ "Hg):	0.00 @ / (
Stop Time:	674		Post-Test Leak	I	0.00	
Sample	Drifice Pressur	Sample	DGM	DGM Temp (°F)	Imp. Outlet	Vacuum
Time	ΔH ("H ₂ O)	Volume (ft³)	Inlet	. Outlet	Temp (°F)	("Hg)
0	8./	250925	37	62	57	3
Ó	(c8	2583	82	54	the state of the s	2
30	7.	265%	178	40	42	3
20	6.9	212.9	45	\$	40	~
38	4	43.08年	85	80	200	1
					4	
\$€?	14	bl.h 50	7	62)	57	3
1 of 52	Average	Total		Average	Maximum	Maximum

Operator: SS Barometric Pressure ("Hg):ユヌ 68 Notes:

EMCo Job #: P

Source: Date:

jec													
t PO	Initial Weight:	ıt:		Post Weight:									
216	Tran ID: 12	rap ID: 26 27					Initial Weight:			Post Weight			
5-00		D 2 207					Tran In. Or 24 20	242					
)31	Kun #			0, (%):			22	12000					
: H	Meter ID: 300 - 1	OD- 14 Yd:	000	CO 18%).			Run # ()	-		0,(%):			
unt	Start Time:	JY.		502 (vo).		- 1	Meter ID: 3	Meter ID: 36- 10 Yd: 1 00 C		CO. (%).			
ing	Chon Time	1		rie-Test Leak Check ("H ₂ O @	leck ("H ₂ O @ "Hg):	0.00 @ (5.	Start Time/	1/4/		7.7.7			
gto	- F	757		Post-Test Leak Check ("H,O @	heck ("H,O @ "Hg):	000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		Pre-Test Leak Ch	Pre-Test Leak Check ("H2O @ "Hg):	0.00 @ 15	
n U	Sample	Sample Rate	Sample	DGM Temp	Imp Outlot		arop time:	7C7		Post-Test Leak C	Post-Test Leak Check ("H2O @ "Hg);	0.00 @ /-/	
nit :	Time	(Lpm)	Volume (L)	(F)	Temp (*E)	vacuum ("11")		Sample Rate		DGM Temp	Imp. Outlet	Vacuum	Stack Tomp
1 Не	0	7	€	6	102	(rig)	Time	(Lpm)	Volume (L)	(F)	Temp (°F)	(aH,,)	לווים אייים
g RA	1			<u>ئ</u>		0	0	Ĭ,	C	7,	1 X	/0.	
ΔTΑ	2	j	7	1	77	0/	3			0	25	0	1
\	000	1	0	100	100		0 8	Ů	(>5)	N O	Y	1	M
	A7PAT		2000	/	9	0	000	1	7	100			
-	45.20	٧	677	26	(1)	1	200	2	1337	9(202	0	1
	5)00	7	100	42	1	7	555	Ú	45,1	87	42	~	11
	3		60.0	10	7.7	0	970%	V.		N	141	\\ \frac{1}{2}	
	2550	(,5)	1,00	47	47	0/	Y-Kw	7		700		0	7
	80 CG	Y	90022	17	1		3	73	02.0	83	\$	Ö	1/8
	2 4	2	0000)	3 T	70	38,60	,	70037	みんり	4.0	2	1000
aroli (0	R	70033	22	46	0/	057	1	020 00		9	7	
	Total	Average	Total	Average	Maximim	Marianim		٦	20-0-01	9	9	0/	1
				0		INIGALITICITE	lotal	Average	Total	Average	Maximum	Maximum	
_													

					1	_	
	Final					5744	70.0
	Initial					6749	Total
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total	

												:	
				Vacuum	("HE)	6)	h	10	7		8	Maximum
		0.00 @ O	0.00	Imp. Outlet	Temp (°F)	12	2,4	97	3	7.5		144	Maximum
112-1	AH@: 1.56.24	Pre-Test Leak Check ("H ₂ O @ "Hg):	Post-Test Leak Check ("H ₂ O @ "Hg): 0.00 @	DGM Temp (°F)	. Outlet	40	40	91	4(A		な	Average
Meter Box ID:	7966.8:px	Pre-Test Leak Cl	Post-Test Leak (DGM	Inlet	8	427	93	83	44	0	5	\$
				Sample	Volume (ft³)	746965	248.7	295.5	3503.4	389 476	9	28415	Total
		654	730	Driffice Pressur	∆H ("H ₂ O)	18	8.1	1.4	1.8.	83		871	Average
Run#	RATA Run #	Start Time:	Stop Time:	Sample	Time	0	0).	30	Z	36		3(,	Total
											Pa	ge 2	5 of 52

Operator: 55 Barometric Pressure ("Hg): 33.06 Notes:

EMCo Job #: PC IG-3

Client: Poc (5) Source: W Date:

				•		Stack Temp	(F)	2	1011		7	15	7	X//	13/	00	
				0.00 @ 15	0.00 @ 00.0	_	("Hg)	0/	10)	0	0/	(0)	3		Maximum
				Pre-Test Leak Check ("H,O @ "Hg):	Post-Test Leak Check ("H2O @ "Hg):	Imp. Outlet	Temp (°F)	728	\ \ \ \	L'A	7	47	27	55	\ \	1	Maximum
Doct Works	rost weight:	0, (%):	CO ₂ (%):	Pre-Test Leak Ch	Post-Test Leak C	DGM Temp	=	24	86	82	70	0	85	85	85	8	Average
	7		yd: 1-600		\neg	Volume (1)	(a) Similar	5	(4.7	2000	1777	7.00	60/	0,0	90.013	90.013	Total
ght:	75747		악	M.	-	(Lpm)	7,		1,0	7.	À			ů	1.5		Average
Initial Weight:	Trap ID:	Run #	Meter ID: 36 C- [15	Start Time: 7-5	Sample Sample	Time			28/0	30 CM	7	3 5	2 (20,	09 de	8	Total
			N O OO	"Hal. 000 @(7	Vacuum	("Hg)	2	1		0	0	15	00'		2	0)	Maximum
			eck ("H.O @ "Ho).	heck ("H-O @ "H9).	Imp. Outlet	Temp (°F)	y y		7		へ さ	56		000	0	なび	Maximum
Post Weight:		02(%):	Pre-Test Leak Check ("H.O @	Post-Test Leak Check ("H.O @	DGM Temp	(F)	~ P	18	6	9	45	44	27	47	20/	7	Average
					Sample	Volume (L)	0	150	1	19.	45,	100	11	2000	20,000	10000	lotal
leht:	0000	Meter ID: 3013-1 A Yd: 1,000	759	451	Sample Rate	(rbm)	Ç	7	1.1	1	(=)	57	Į, ć	J.	5		Page 1946
ect PC10	Run # (0	Meter ID: 4	0,1	Stop Time:	,		O F	2 y	O COX		0C3X	9	25 50	30 66	3	Total	

						7555		_
	Final					188	(230)	
	Initial					6823	Total	•
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

R	Run#6			Meter Box ID: 115	115-(
2	RATA Run #			Ydy 49 1.66	NHO.1 GC OV		
St	Start Time: 17	444		Day Tock look	100000		
16		1		ייים ב-ובאר דבמע ר	Fige-Test Leak Check ("H2O (0" "Hg);	0.00 @ 6	
X	Stop Time:	436		Post-Test Leak	Post-Test Leak Check ("H2O @ "Hg): 0.00 @ 6	ı	
	Sample	Drifice Pressure	Sample	NBQ	DGM Temp (°F)	Imp. Outlet	Vacinim
	Time	ΔH ("H ₂ O)	Volume (ft³)	Inlet	Outlet	Temp (°E)	("FD)
	0	(48)	14165	18	62	25	190
	0,	831	417		100	005	1
_	9		100	200	70	37	7
	9	8,	1543.8	200	8	57	7
	3	1-8	3323	85	83	42	2
	36	1-4	340.788	35	43	44	7
				25		7	
Pa							
age 2	4	S.	31.297	(47	200	,
26 o	Total	Average	Total	1	Average	Maximum	Maximum

Proje

of 52

Operator: 55 Barometric Pressure ("Hg):353

EMCo Job #: PC/ Client: Percs

Source: (

Notes:

oj€												
to Initial Weight:			10000							٥.		
ć	10000		rost weignt:			Initial Weight:						_
rap ID: OC	391	7				,	1		Post Weight:			
800 800			.1%)			Trap ID: 35'55/4	55(5					
1. Meter ID: 30.3- 1 Avd.	1		021/0].			Run #17	@		(%).			
	- Mid:	200	CO ₂ (%):			Motor Info	1	1	02 (20):		3.	
	2		Pre-Test Leak Ch	Pre-Test Leak Check ("H,O @ "Ho).	7, 6,000	3	. 10		CO ₂ (%):		-	
Stop Time: /O	75		Post-Test Leak Check ("H.O.	heck ("H.O @ "uo\.	() (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Y	70	C	Pre-Test Leak Ch	Pre-Test Leak Check ("H,O @ "Hg):	0.00 @ /	
Sample	Sample Rate S	Sample	DGM Tomp	120 @ 118/	3[Stop Time: 12	202		Post-Test Leak C	Post-Test Leak Check ("H,O @ "Ho):	000	
Time of			מוש	imp. Outlet	Vacuum	Sample	Sample Rate	Sample	DC84 T	10.	0.00 m	
+	(rbm) vo	Volume (L)	(F)	Temp (°F)	("Hg)		(Lom)	Volume	duar Mod	Imp. Outlet	Vacuum	Stack Temp
O	Š	0	タスト	15	Ş			Colonie (L)	(r)	Temp (°F)	("Hg)	Œ
RA	1			P	5	0	X	0	7	77	Ó	1/1/
		J. C	£ \$	1×	2	2.	1/2	1	1			7
1 × 1	1	200	0	2	1	5	1	(3,3	26	40	0	2/2/
1		-	ò	77	0/	3070	7,7	30,7	99	1,		-
15.30	S	ر ا ا	5	75		S		1	700	1	5	*
CHS.	1	0	200	2		12.00	1	12, '	87	2,0	0	<i>ħ]]</i> ,
1	<u>الر</u>	20,0	7	2	(3)	2040		- 07	2,62	1		
25,52	N K	14.1	2,3	()	1			100	7	0	10	11
4 4 4 5	10		*		10	28.7¢	7.7	73-1	4	Ç	0	1)]),
79	57 (5)	20.02	2	27	0/2	301.7	ゾ	90.022	42			7 -
0	5 190	10.054	86	んプ	9/			10000	**	27		2
	Average	Total	Average	Maulmine		-	7.7	45.5	29		9	ナー
			5 S S S S S S S S S S S S S S S S S S S	INIGALITUM	Maximum	Total	Average	Total	Average	Maximum	Maximum	
Run# 7			Meter Box ID:								ŧ.	
RATA Run #									,			
			Ta:	ଦ୍ୟାയ:								
Start Time:			Pre-Test Leak Check ("H ₂ O @	eck ("H20 @ "Hg):	0.00							
i				The second secon	,							

	Final							
	Initial					A.	Total	
1	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

Start Time:			Pre-Test Leak Cl	H,O @ "Hg):	0.00		
Stop Time:			Post-Tect Leak		000		
				SILCON 1120 @ 115/1	0.00		
Sample	Prifice Pressure	Sample	DBM	DGM Temp (°F)	Imp. Outlet	Vacuum	
Time	ΔH ("H ₂ O)	Volume (ft³)	Inlet	Outlet	Temp (°F)	("Ha)	
0		3 6				10.	
			÷				
			à				
Total	Average	Total		Vorsage.	A down		
	,00		•	Avelage	MAXIMI	Ivlaximum	

Operator: SS Barometric Pressure ("Hg):うろ, CS Notes:

EMCo Job #: 17 Client: Paci

Source: Date:

					_		**		Charl. To	orack Temp	Ţ	人	13/	1	X	N	1	X	7	10/1			
							0.00	0.00	Vacilium	("במיוון	(ag)	0	10	1	0	9	100	2	0	0)		2	Maximum
							Pre-Test Leak Check ("H,O @ "Hg):	Post-Test Leak Check ("H2O @ "Hg):	Imp. Outlet	Temp (°F)	1		5		52	\Y		770	ング	44	12/2	*	Maximum
	Post Weight	11000		0,(%);	(%)	2021/07	Pre-Test Leak C	Post-Test Leak C	DGM Temp	(£)	7		47	00	74	なレ	SA	000	22	40	AN	1	Average
		7			38				Sample	Volume (L)	0	1	0.3	3	1,1	45,1	000		15-1	8.203	90.203	Total	lotal
	ht:	76272	5 6		Meter 10:303-175 yd: /	18	7	5)	Sample Rate	(Lpm)	125	1	12			(-5	· \ \			5	1.5	Δνουσσο	אען ספע
	Initial Weight:	Tran ID.	- 16	Run# 2	Meter ID:	Start Time.	1	stop lime:	Sample	Time	0	0/	6	200%		15.8	2640	0	25:30	38(C)	00	Total	2
						0.00 @ A	4 5	N	Vacuum	(HB)	0			0	(3,	0	01	100	0	10	Maximum	
						Pre-lest Leak Check ("H2O @ "Hg):	Check ("H.O @ "Ho).	Imp. Outlet	Temp/'E)	() ()	300	\ \ \ \		ンイ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200	5.5	イグ			77	Maximum	
Doct Motobet.	rost weight:		0, (%):	70 601	202 (70).	Pre-Test Leak C	Post-Test Leak Check ("H,O @	DGM Temp	(F)	10	90	2	99	22	000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	×	100	2/2	4	Average	
	1/10/	7171C		(Jac)			05	Sample	Volume (L)	():	7-0	la.	200	1/20	0000	3/3	72	90000	2000	20.01	otal	
<u>;;</u>	SC.1276	21 2 10		30R-1/4Yd:	100K			Sample Rate	(Lpm)	١,٧	1	(;)	7,		Ñ		4		7	1		Average	
Initial Weight:	C16	, .		H Meter ID:	Start Time:	-	gto		Time Time	C 1 H	L	ATA	3604	2	X X	5	2 6	75.76	979	0	1 2 2	1000	

	Final						
	Initial						Total
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total	

Pre-Test Leak Check ("H2O @ "Hg): 0.00 @

∆н@:

Meter Box ID: Yd:

RATA Run # Start Time:

Run #

Barometric Pressure ("Hg): 23 CA

Notes:

Operator: 55

EMCo Job #:

Client: // Source: 1 Date: Po,

						-		Stack Temn	(1)	77/		1/2	18/	81	X	1011	- 10		X	
						0.00 @	0.00@/~	Г		10)		10	10	10	10	0/		X	0)	Maximum
						ck ("H ₂ O @ "Hg):	Post-Test Leak Check ("H2O @ "Hg):	Imp. Outlet	Temp (°F)	5	40		8%	22	88	W W	61	10.3	2002	Maximum
		Post Weight:		02(%):	CO ₂ (%):	Pre-Test Leak Check ("H2O @ "Hg):	Post-Test Leak Ch	DGM Temp	(F)	78	28		XX	88	88	88	XX	200		Average
					0000			Sample	Volume (L)	0	Y	500	8	100	1.00	00	70.044	40.040		lotal
٠	÷	2000	Irap ID: 30 VOC		21	V)	4700	Sample Rate	(Lpm)	\? 	7,5	1	1	(:>	1.5	1.5	1.5	1	7	Average
	Initial Weight.	95	Trap ID:	Run # 2	Meter ID: タス・	Start Time:	Some lime:	Time	alline	0	05	00:36	200	R	2,8	2850	306	00	Total	1000
					0,000	0.00 @ 00.00	Vacillim	("Ha)	/8/1	2	10	01		25	5,	10	01	10	Maximum	
					120 O W. 120.	theck ("H,O @ "Hg):	Imp. Outlet	Temp (°F)	100		44	00	1.0	1000	NA.	NA.	44	50	Maximum	
	Post Weight:		0, (%):	(%):	Pre-Test Leak Check /"u o @ o	Post-Test Leak Check ("H,O @	DGM Temp	(F)	47	1	P	VA	4	100	00	ρ	S.	9	Average	
		8		74: r-000			Sample	Volume (L)	0	150	5,0	13.3	950	- 27) X	7.00	150.00	30.0	Total	
	nt:	27128		7	110%	(20g	Sample Rate	(Lpm)	Y	1,1	1	(<u>`</u>	1.5	1.5	1	14			Average	
	Ψ.		Mun # 031:	Meter ID: 308	nitn	ठ्य	··	t 1	O Hg I	RATA		202	2530	SK-10	7%	2	3	9	lotal	

	_		,	,		_		
	Final					6942	1224	
	Initial					621.8	Total	•
•	Impinger Weights	Impinger 1	Impinger 2	Impinger 3	Impinger 4 (SG)	Total		

					pajami	9				Impi						
					Vacuum	("Ha)	19,1		Υ,	N	ľ	1	7		1	Maximum
			0.00 @ G	0.00 @	Imp. Outlet	Temp (°F)	200	Z Z	1	573	217	0	ベン		62	Maximum
Meter Box ID: MC /		1704 DHO: (-824	Pre-Test Leak Check ("H2O @ "Hg):	Ι	DGM Temp (°F)	Inlet Outlet	120 78	7	k	85 89	40 22	200	6 82	((43)	Average
Mete	SPA	Sol	Pre-T	[44] Post-	Sample	Volume (ft³)	346.745	3484 6	1	225	3659	シックなってい	50000		29.445	Total
	-	50/1	100	130%	Drifice Pressur	ΔH ("H ₂ O)	1.8	۲,۶		R	÷,	Ì	*		15	Average
Run#	RATA Run #	1	start IIme:	Stop Time:	Sample	Time	0	01	()	2	20	,	25		٦٢	Total

CEMS Data

RATA Test - Part 75

Plant: HGTN Source: UNIT1

Unit of Measure: UG/SCM

Test Number: XML (115-Q2-2016-001) / EDR (1)

Test Result: PassAPS

Overall BAF: 1

Frequency: 4QTRS

Test Reason: QA-Periodic Quality Assurance Effective Date/Time: 06/29/2016 13:08 Monitoring System ID: 115

Parameter: HGT

Overall RA: 841.39

CEMS Time Offset:

Test Comment:

Report in EDR: Y Use BAF: Y Dof tValue: 2.306 APS Indicator: True Avg Load: 480 Relative Accuracy: 841.39 Level BAF: 1.000 Standard Deviation: 0.056 Mean CEMS: 0.182 Mean Reference: 0.024 Operating Level: High Project PC16-0031: Huntington Unit 1 Hg RATA

Reference Method: 30B		477	478 ×	20/1	1007	- 2007	402	482	403	7 7 481 Y
		-0.292	-0.178	-0 184	-0.137	-0.117	-0.176	-0.126	-0.141	-0.124
2007	Difference		2	4	. 00			. «		4
	CEMS Value	0.323	0.205	0.204	0.158	0.142	0.147	0.146	0.161	0.154
Confidence Coefficient: 0.043	Reference Value	0.031	0.027	0.020	0.021	0.025	0.021	0.020	0.020	0.030
Confid	Ended	06/28/2016 10:04	06/28/2016 11:12	06/28/2016 12:17	06/29/2016 06:50	06/29/2016 07:53	06/29/2016 08:58	06/29/2016 10:01	06/29/2016 11:04	06/29/2016 12:08
Mean Difference: -0.158	Started	06/28/2016 09:05	06/28/2016 10:13	06/28/2016 11:18	06/29/2016 05:51	06/29/2016 06:54	06/29/2016 07:59	06/29/2016 09:02	06/29/2016 10:05	06/29/2016 11:09
Mean	nn un	-	2	က	4	2	9	7	œ	0

Page 31 of 52

2-1

Average Data
Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/28/2016 09:05 Through 06/28/2016 10:04
Time Online Criteria: 1 minute(s)

	ource			Time Online Chteria:	i minute(s)		
Para	ameter Unit)	CO2 (PCT)	HG0 (UG/M3)	HGLB/MM (LB/MMBTU)	HGLB/T (LB/TBTU)	HGT (UG/SCM)	UNITLOAD (MW)
06/28/16	09:05	11.1	0.305	0.000000000 F	0.440384594	0.435	481
06/28/16	09:06	11,0	0.340	0.00000000 F	0.453582327	0,444	480
06/28/16	09:07	11.0	0.338	0.000000000 F 0.000000000 F	0.477078709	0.467	479
06/28/16	09:09	11.0	0.308	0.000000000 F	0.477078709	0.467	477
06/28/16	09:10	11.0	0.280	0.000000000 F	0.459711818	0.450	473
06/28/16	09:11	10.9	0.265	0.00000000 F	0.453619616	0.440	472
06/28/16	09:12	10.9	0.247	0.000000000 F	0.454650770	0.441	471
06/28/16	09:13	10.9	0.279	0.000000000 F	0.469084128	0.455	473
06/28/16	09:14	11.0	0.308	0.000000000 F	0.452560745	0.443	476
06/28/16	09:15	11.0	0.296	0.000000000 F	0.447452836	0.438	477
06/28/16	09:17	10.9	0.284	0.00000000 F	0.391762568	0.380	477
06/28/16	09:18	10.9	0.284	0.000000000 F	0.378360165	0.367	477
06/28/16	09:19	10.9	0.242	0.000000000 F	0.379391119	0.368	475
06/28/16	09:20	10.9	0.196	0.000000000 F	0.408257834	0.396	474
06/28/16	09.21	10.9	0.257	0.000000000 F	0.454850770	0.441	475
06/28/16	09:22	11.0	0.314	0.000000000 F	0.398416909	0.390	477
06/28/16	09:24	11.0	0.281	0.00000000 F	0.341208327	0.334 0.326	479 482
06/28/16	09:25	11,1	0.307	0.00000000 F	0.342163891	0.338	483
06/28/16	09:26	11.0	0.368	0.000000000 F	0.326906181	0.320	483
06/28/16	09:27	11.0	0.337	0.000000000 F	0.314647200	0.308	483
06/28/16	09:28	11.0	0.301	0.000000000 F	0.299323472	0.293	480
06/28/16	09:29	11.0	0.305	0.000000000 F	0.295237145	0.289	478
06/28/16	09:30	10.9	0.306	0.000000000 F	0.305162422	0.296	477
06/28/16	09:31 09:32	10.9	0.281	0.000000000 F	0.324750650	0.315	474 473
06/28/16	09:33	10.9	0.259	0.00000000 F	0.331967229	0.315	473
06/28/16	09:34	11.0	0.262	0.000000000 F	0.339165163	0.332	474
06/28/16	09:35	10.9	0.278	0.000000000 F	0.362895853	0.352	475
06/28/16	09:36	10.9	0.291	0.000000000 F	0.318564825	0.309	478
06/28/16	09:37	11.1	0.289	0.000000000 F	0.270305027	0.267	480
06/28/16	09:38	11.1	0.284	0.000000000 F	0.287515459	0.284	480
06/28/16	09:40	10.9	0.283	0.000000000 F	0.329970927 0.316502917	0.323	480 478
06/28/16	09:41	10.9	0.261	0.000000000 F	0.302069559	0.293	476
06/28/16	09:42	10,9	0.241	0.000000000 F	0.279388568	0.271	474
06/28/16	09;43	10,9	0.289	0.000000000 F	0.267017119	0.259	473
06/28/16	09:44	10.9	0.334	0.000000000 F	0.241243266	0.234	473
06/28/16	09:45	10.9	0.277	0.000000000 F	0.223717045	0.217	475
06/28/16	09:46	10.9	0.216	0.000000000 F	0.230933724	0.224	478
06/28/16	09:48	11.0	0.287	0.000000000 F	0.260503363	0.255	478 479
06/28/16	09:49	11.0	0.281	0.000000000 F	0.277870254	0.272	479
06/28/16	09:50	10.9	0.271	0.000000000 F	0.286605247	0.278	476
06/28/16	09:51	10.9	0.241	0.000000000 F	0.303100513	0.294	476
06/28/16	09:52	10.9	0.208	0.000000000 F	0.291760018	0.283	474
06/28/16 06/28/16	09:53	11,0	0.198 0.185	0.000000000 F	0.263999745	0.278	472
06/28/16	09:55	10.9	0.165	0.00000000 F	0.259800440	0.260	474
06/28/16	09:56	11.1	0.284	0.000000000 F	0.231834648	0.229	481
06/28/16	09:57	11.0	0.273	0.000000000 F	0.219640090	0.215	481
06/28/16	09:58	11.0	0.257	0.000000000 F	0.237006981	0.232	483
06/28/16	09:59	11.1	0.253	0.000000000 F	0.267267891	0.264	483
06/28/16	10:00	10.9	0.246	0.00000000 F	0.267017119	0.259	480
06/28/16 06/28/16	10:01	10.9	0.290	0.00000000 F 0.00000000 F	0.265966165	0.258	478
06/28/16	10:02	10.9	0.270	0.000000000 F	0.247639000 0.231964678	0.238	477
06/28/16	10:04	10.8	0.207	0.000000000 F	0.215383500	0.207	469

	Average Animum	11.0	0.276	0.000000000	0.330983400	0.323	477
	animum Isximum	11.1	0.165	0.00000000	0.215383500	0.207	469 483
	nmation	657.3	16.549	0.00000000	19,859003588	19,364	28,618

Average	11.0	0.276	0.000000000	0.330983400	0.323	477
Mnimum	10.8	0.185	0.000000000	0.215383500	0.207	469
Maximum	11.1	0.368	0.000000000	0.477078709	0.467	483
Summation	657.3	16.549	0.000000000	19.859003988	19,364	28,618
Included Data	60	60	0	60	60	60
Total number of	60	60	60	60	60	60

Average Data
Plant HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 08/28/2016 10:13 Through 06/28/2016 11:12
Time Online Criteria: 1 minute(s)

Source			16	NM ·		
Parameter (Unit)	CO2 (PCT)	HG0 (UG/M3)	HGLB/MM (LB/MMBTU)	HGLB/T (LB/TBTU)	HGT (UG/SCM)	UNITLOAD (MW)
06/28/16 10:13	11.1	0,306	0.000000000 F	0.257144108	0.254	479
06/28/16 10:14	11.1	0,280	0.000000000 F	0.206549945	0,206	484
06/28/16 10:15	11.0	0,258	0.000000000 F	0.160388345	0.157	485
06/28/16 10:16	11.0	0.233	0.00000000 F	0.196143709	0.192	484
06/28/16 10:17	10.9	0.232	0.00000000 F	0.260831394	0.253	482
06/28/16 10:18 06/28/16 10:19	10.9	0.228	0.000000000 F 0.000000000 F	0.259800440	0.252	481
06/28/16 10:20	10.9	0.297	0.00000000 F	0.271140935	0.250	480 478
06/28/16 10:21	10.8	0.282	0.00000000 F	0.300704500	0.289	477
06/28/16 10:22	10,7	0.265	0.000000000 F	0.261506850	0.249	479
06/28/16 10:23	10.9	0.251	0.000000000 F	0.214438458	0.208	481
06/28/16 10:24	10.9	0.235	0.000000000 F	0.213407504	0.207	479
06/28/16 10:25	10.8	0.248	0.000000000 F	0.232031500	0.223	474
06/28/16 10:26	10.9	0.257	0.00000000 F	0.211345596	0.205	470
06/28/16 10:27	10.9	0.231	0.000000000 F	0,198974146	0.193	467
06/28/16 10:28 06/28/16 10:29	11.0	0.203	0,000000000 F	0.232920654	0.228	468
06/28/16 10:29 06/28/16 10:30	11.0	0.225	0.000000000 F	0.286042909	0.280	472 475
06/28/16 10:31	11.1	0.237	0.00000000 F	0.203488054	0.243	478
06/28/16 10:32	11.1	0.227	0.000000000 F	0.209562324	0.207	479
06/28/16 10:33	11.2	0.180	0.000000000 F	0.232774714	0.232	480
06/28/16 10:34	11.1	0.129	0.000000000 F	0.223735621	0,221	480
06/28/16 10:35	11.0	0.177	0.000000000 F	0.218618509	0.214	478
06/28/16 10:36	11.0	0.222	0.00000000 F	0,191035800	0.187	476
06/28/16 10:37	11.0	0.257	0.000000000 F	0.172647327	0,169	474
06/28/16 10:38	11.0	0.288	0.000000000 F	0.165496254	0.162	473
06/28/16 10:39	11.0	0.271	0.000000000 F	0.169582581	0.166	474
06/28/16 10:40	11.1	0.251	0.000000000 F	0.196401406	0.194	475
06/28/16 10:41 06/28/16 10:42	11.1	0.263	0.000000000 F	0.238921297	0.236	477 480
06/28/16 10:43	11.1	0.260	0.00000000 F	0.244995567	0.242	480
06/28/16 10:44	11.1	0.247	0.00000000 F	0.187290000	0,185	481
06/28/16 10:45	11.1	0.292	0.000000000 F	0.129584432	0.128	483
06/28/16 10:46	11.1	0.334	0.000000000 F	0.139708216	0,138	480
06/28/16 10:47	11.0	0.325	0.000000000 F	0.174690490	0.171	476
06/28/16 10:48	11.0	0.313	0.00000000 F	0,187971054	0,184	474
06/28/16 10:49	11.0	0.289	0.000000000 F	0.208402690	0.204	474
06/28/16 10:50	11.1	0.262	0.00000000 F	0.203488054	0.201	476
06/28/16 10:51 06/28/16 10:52	11.2	0.286	0.000000000 F	0.203677875	0.203	479
06/28/16 10:52 06/28/16 10:53	11.1	0.308	0.000000000 F	0.188302378 0.178776818	0.186	479
06/28/16 10:54	11.1	0.236	0.000000000 F	0.158943405	0.157	477
06/28/16 10:55	11.0	0.270	0.000000000 F	0.151194109	0.148	474
06/28/16 10:56	11.0	0.299	0,000000000 F	0.187971054	0.184	475
06/28/16 10:57	11.1	0.275	0,000000000 F	0.242970810	0.240	475
06/28/16 10:58	11.1	0.247	0.000000000 F	0,237908918	0,235	477
06/28/16 10:59	11.2	0.240	0.000000000 F	0.231771375	0,231	479
06/28/16 11:00	11.1	0.228	0.000000000 F	0,230822270	0.228	480
06/28/16 11:01 06/28/16 11:02	11.1	0.268	0.000000000 F	0.239933675	0.237	477
06/28/16 11:03	11.2	0.305	0.000000000 F	0.124522540	0.180	475 480
06/28/16 11:04	11.0	0.212	0.00000000 F	0.136891963	0.123	480 485
06/28/16 11:05	11.0	0.216	0.000000000 F	0.170604163	0.167	487
06/28/16 11:06	10.9	0.216	0.00000000 F	0.181447926	0.176	485
06/28/16 11:07	10.8	0.253	0.00000000 F	0.200816500	0,193	483
06/28/16 11:08	10.9	0.268	0.00000000 F	0.187633651	0,182	478
06/28/16 11:09	10.8	0.260	0.000000000 F	0.183128000	0.176	473
06/28/16 11:10	10.8	0.229	0.00000000 F	0.220586000	0.212	470
06/28/16 11:11 06/28/16 11:12	10.8	0.240	0.000000000 F	0.275732500	0.265	469
06/28/16 11:12	10.8	0.249	0.000000000 F	0.247639000	0.238	471
Average	11.0	0.255	0.00000000	0.209486898	0.206	478
Minimum	10.7	0.200	0.00000000	0.124522540	0.123	4/8
Moximum	11.2	0.334	0.000000000	0.300704500	0.289	487
Summation	660.2	15.293	0.000000000	12.569213893	12.301	28,650
Included Data Points Total number of Crate Points	60 60	60	0	60 60	60	60 60

Average Data

Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/28/2016 11:18 Through 06/28/2016 12:17
Time Online Criteria: 1 minute(s)

Sc	ource			Uine Online Onteria.	NIT1		
Par	ameter Unit)	CO2 (PCT)	HG0 (UG/M3)	HGLB/MM (LB/MMBTU)	HGL8/T (LB/TBTU)	HGT (UG/SCM)	UNITLOAD (MW)
06/28/16	11:18	11.0	0.230	0.000000000 F	0.280935000	0.275	470
06/28/16		10.9	0.231	0.000000000 F	0.317533871	0.308	471
06/28/16 06/28/16	11:20	10.8	0.227	0.000000000 F	0.283016000	0.272 0.235	476 479
06/28/16	11:22	10.9	0.293	0,00000000 F	0.173200293	0.168	480
06/28/16	11:23	10.8	0.255	0.000000000 F	0.111333500	0.107	480
06/28/16	11:24	10.8	0.214	0.000000000 F	0.159196500	0.153	479
06/28/16	11:25	10,8	0.242	0.000000000 F 0.000000000 F	0.238274500	0.229	476
06/28/16	11:25	10.7	0.266	0.000000000 F	0.215295981 0.181688803	0.205	473 459
06/28/16	11:28	10.7	0.205	0.000000000 F	0.185889700	0.177	469
06/28/16	11:29	10.6	0.251	0.000000000 F	0.208846018	0.197	470
06/28/16	11:30	10.7	0.292	0.000000000 F	0.233149794	0.222	472
06/28/16	11:31	10.7	0.271	0.000000000 F 0.000000000 F	0.273058317	0.260	473 475
06/28/16	11:33	10.8	0.242	0.00000000 F	0.244517500	0.235	475
06/28/16	11:34	10.8	0.233	0.000000000 F	0.263246500	0.253	477
06/28/16	11:35	10.9	0.215	0.000000000 F	0.295883834	0.287	477
06/28/16	11:36	10.9	0.193	0.000000000 F	0,261862348	0.254	477
06/28/16	11:37	10.9	0.255	0.000000000 F 0.000000000 F	0.226809908	0.220	479 479
06/28/16	11:39	10.8	0.280	0.000000000 F	0.167520500	0.161	479
06/28/16	11:40	10,8	0.245	0.000000000 F	0.163358500	0.157	479
06/28/16	11:41	10.8	0.277	0.000000000 F	0.174804000	0,168	479
06/28/16	11:42 11:43	10.8	0.307	0.000000000 F 0.000000000 F	0.210181000 0.259084500	0.202	478 475
06/28/16	11:44	10.6	0.259	0,00000000 F	0.219545500	0.249	474
06/28/16	11:45	10.8	0.264	0.000000000 F	0.173763500	0.167	473
08/28/16	11:46	10.8	0.266	0.000000000 F	0.207059500	0.199	474
06/28/16	11:47	10.7	0.259	0.000000000 F	0.267807196	0.255	475
06/28/16	11:48 11:49	10.7	0.249	0,000000000 F	0.274108542	0.261	477 476
06/28/16	11:50	10,8	0.206	0.000000000 F	0.283246500	0.253	475
06/28/16	11:51	10.8	0.205	0.000000000 F	0.251801000	0.242	475
06/28/16	11:52	10.8	0.201	0.000000000 F	0.213302500	0.205	476
06/28/16	11:53 11:54	10.9	0.207	0.00000000 F	0.178355064	0.173	478
06/28/16	11:55	10.9	0.210	0.00000000 F	0.262893302	0.203	480 481
06/28/16	11:56	10.8	0.188	0.000000000 F	0.235153000	0.226	482
06/28/16	11:57	10.8	0.224	0.000000000 F	0.199776000	0.192	481
06/28/16	11:58	10.8	0.256	0.000000000 F	0.151913000	0.146	479
06/28/16 06/28/16	11:59	10.8	0.236	0.000000000 F	0.111333500	0.107	478
06/28/16	12:01	10.8	0.222	0.000000000 F	0.201857000	0.194	475
06/28/16	12:02	10.7	0.227	0.000000000 F	0.218446654	0.208	475
06/28/16	12:03	10.8	0.224	0.000000000 F	0.234112500	0.225	474
06/28/16	12:04 12:05	10.8	0.219	0.000000000 F 0.000000000 F	0.200816500	0.193	475 476
06/28/16	12:06	10.8	0.327	0.000000000 F	0.183128000	0.176	476
06/28/16	12:07	10.7	0.290	0.000000000 F	0.220547102	0.210	476
06/28/16	12:08	10.7	0.250	0.000000000 F	0.204793738	0.195	476
06/28/16	12:09	10.8	0.222	0.000000000 F	0.188330500	0.181	477
06/28/16 06/28/16	12:10	10.7	0.192	0.000000000 F 0.000000000 F	0.201036055 0.235250243	0.195	477
06/28/16	12:12	10.7	0.238	0.000000000 F	0.194291495	0,185	475
06/28/16	12:13	10.8	0.241	0.000000000 F	0.150872500	0.145	477
06/28/16	12:14	10.9	0.241	0.000000000 F	0.147426440	0.143	478
06/28/16 06/28/16	12:15	10.9	0.237	0.000000000 F 0.000000000 F	0.163921706	0.159	479 480
06/28/16	12:17	10,8	0.258	0.000000000 F	0.187290000	0.180	479
				***************************************	***************************************		
	Average	10.8	0.242	0.00000000	0.212259658	0.204	476
	Average Minimum	10.6	0.242	0.00000000	0.212259658	0.204	476 469
	Auximum	11.0	0.327	0.000000000	0.317533871	0.308	482
Sur	mmation	648.1	14.547	0.000000000	12.735579490	12.242	28,578
	ad Date	-		_			
Total nu	Points Points mber of a Points	60	60 60	O 60	60 60	60	60

12-4

Average Data
Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/29/2016 05:51 Through 06/29/2016 06:50
Time Online Criteria: 1 minute(s)

Source				UNIT1		
	CO2	HG0	HGLB/MM	HGLB/T	HGT	UNITLOAD
Parameter (Unit)	(PCT)	(UG/M3)	(LB/MMBTU)	(LB/TBTU)	(UG/SCM)	(MVV)
06/29/16 05:5	1 10.8	3 0.262	0.000000000 F	0,169601500	0.163	481
06/29/16 05:5	2 10.8		0.000000000 F	0.171682500	0.165	482
06/29/16 05:5	3 10.8	0.220	0.000000000 F	0.181047000	0.174	483
06/29/16 05:5			0.000000000 F	0.204978500	0.197	483
06/29/16 05:5			0.000000000 F	0.172723000	0.166	482
06/29/16 05:5 06/29/16 05:5			0.000000000 F	0.142548500	0.137	483
06/29/16 05:5			0.000000000 F	0.104050000	0,100	480 480
06/29/16 05:50			0.000000000 F	0.105090500	0.101	480
06/29/16 06:00	10.8	0.288	0.000000000 F	0.153994000	0.148	479
06/29/16 06:01	1 10.8	0.314	0.000000000 F	0.104050000	0.100	478
06/29/16 06:00			0,000000000 F	0.050200721	0.048	479
06/29/16 06:03			0.000000000 F	0.080762248	0.077	480
06/29/16 06:04			0.000000000 F	0.139679831	0.133	480
06/29/16 06:05 06/29/16 06:06		0.232	0.000000000 F	0.175387457	0.167	479 478
06/29/16 06:07			0.000000000 F	0.208846018	0.197	477
06/29/16 06:08		0,186	0.00000000 F	0.196391943	0.187	479
06/29/16 06:09	10.7	0.205	0.000000000 F	0.160684317	0.153	479
06/29/16 06:10	10.8	0.233	0.000000000 F	0.132143500	0.127	478
06/29/16 06:11		0.255	0.000000000 F	0,166985663	0.159	476
06/29/16 06:12		0.205	0.000000000 F	0.223707500	0.215	476
06/29/16 06:13 06/29/16 06:14		0.150	0.000000000 F	0.183789252	0.175	474
06/29/16 06:14 06/29/16 06:15		0.187 0.218	0.000000000 F	0.137579383 0.148081626	0.131	473 476
06/29/16 06:16	10.6	0.259	0.000000000 F	0.182342717	0.172	479
06/29/16 06:17	10.7	0.295	0.000000000 F	0,150182074	0.143	483
06/29/16 06:18	10.7	0.263	0.000000000 F	0,121826018	0.116	484
06/29/16 06:19	10.7	0.225	0.000000000 F	0.131276037	0.125	485
06/29/16 06:20	10.6	0.216	0.000000000 F	0.163260339	0.154	485
06/29/16 08:21	10.6	0.202	0.000000000 F	0.178102188	0.168	484
06/29/16 06:22 06/29/16 06:23	10.7	0.227	0.000000000 F	0.201643065	0.192	486
06/29/16 06:24	10.8	0.222	0.00000000 F	0.159196500	0.170	486 489
06/29/16 06:25	10.7	0.192	0.000000000 F	0.126026915	0.120	492
06/29/16 06:26	10.7	0.218	0.000000000 F	0.100506465	0,096	493
06/29/16 06:27	10.6	0.238	0.000000000 F	0.125095584	0,118	491
06/29/16 06:28	10,7	0.242	0.000000000 F	0.169086112	0.161	489
06/29/16 06:29	10.7	0.240	0.000000000 F	0.205843962	0.196	484
06/29/16 06:30 06/29/16 06:31	10.7	0.234	0.00000000 F 0.00000000 F	0.255204504	0.243	479
06/29/16 06:31	10.5	0.256	0.00000000 F	0.162674742	0.199 0.152	475 474
06/29/16 06:33	10.6	0.285	0.00000000 F	0.170681264	0.161	474
06/29/16 06:34	10.6	0.232	0.000000000 F	0.202485226	0.191	476
06/29/16 06:35	10.6	0,174	0.000000000 F	0.219447339	0.207	476
06/29/16 06:36	10.5	0.189	0.000000000 F	0.249363257	0.233	477
06/29/16 06:37	10.6	0,199	0,000000000 F	0.225806132	0.213	478
06/29/16 06:38 06/29/16 06:39	10.7	0.213	0.000000000 F	0.206894186	0.197	481
06/29/16 06:40	10.7	0.223	0.00000000 F	0.198492392	0.189	481 482
06/29/16 06:41	10.7	0.236	0.000000000 F	0.196391943	0.187	484
06/29/16 06:42	10.8	0.216	0,000000000 F	0.196654500	0.189	484
06/29/16 06:43	10.8	0,191	0.000000000 F	0.181047000	0.174	483
06/29/16 06:44	10.9	0.225	0.000000000 F	0.174231247	0.169	483
06/29/16 06:45	10.8	0.252	0.000000000 F	0.159196500	0.153	483
06/29/16 06:46 06/29/16 06:47	10.8	0.247	0.000000000 F 0.000000000 F	0.152953500 0.135478934	0.147	463
06/29/16 06:48	10.7	0.240	0.00000000 F	0.127077140	0.129	483 482
06/29/16 06:49	10.8	0.238	0.00000000 F	0.133184000	0.128	482
06/29/16 06:50	10.8	0.228	0.00000000 F	0.153994000	0.148	483
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Average	10.7	0.231	0.000000000	0.165392772	0.158	481
Mnimum	10.5	0.150	0.00000000	0.050200721	0.048	473
Maximum Summation	10.9 642.8	0.314 13.865	0.000000000	0.255204504	0.243	493
Junimeson	OHEO	13,003	V	9.923506325	9,457	28,868
Included Data Pointe Total number of Data Pointe	60 60	60 60	0 60	60 60	60 60	60

Average Data
Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/29/2016 06:54 Through 06/29/2016 07:53
Time Online Criteria: 1 minute(s)

Source [NIT1		
-	CO2	HG0	HGLB/MM	HGLB/T	HGT	UNITLOAD
Parameter (Unit)	(PCT)	(UG/M3)	(LB/MMBTU)	(LB/TBTU)	(UG/SCM)	(MW)
06/29/16 06:54	10.8	0.214	0.000000000 F	0.185209000	0.178	
06/29/16 06:55	10.9	0.164	0.00000000 F	0.140209761	0.178	483 483
06/29/16 06:56	10.9	0.196	0.000000000 F	0.102683031	0.100	482
06/29/16 06:57	10.9	0.222	0.000000000 F	0.136085945	0.132	483
06/29/16 06:58	10.8	0.238	0.00000000 F	0.196654500	0.189	482
06/29/16 06:59	10.7	0,249	0.000000000 F	0.174337233	0.166	482
06/29/16 07:00	10.7	0.226	0.000000000 F	0,147031401	0.140	481
06/29/16 07:01	10.7	0.199	0.000000000 F	0.109223327	0.104	481
06/29/16 07:02	10.7	0.258	0.000000000 F	0.082337585	0.078	480
06/29/16 07:03	10.7	0.312	0.000000000 F	0.096515613	0.092	482
06/29/16 07:04	10,8	0.263	0.000000000 F	0.129022000	0.124	479
06/29/16 07:05	10.8	0.209	0.000000000 F	0.095934100	0.092	479
06/29/16 07:06 06/29/16 07:07	10.7	0.197	0.00000000 F	0.063538570	0.061	480
06/29/16 07:08	10.7	0.180	0.00000000 F	0.087588706	0.083	480
06/29/16 07:09	10.7	0.263	0.00000000 F	0.158583869	0.151	482
06/29/16 07:10	10.8	0.239	0.00000000 F	0.189371000	0.182	402 484
06/29/16 07:11	10.9	0.211	0.000000000 F	0.181447926	0.176	485
06/29/16 07:12	10.9	0.199	0.000000000 F	0.180416972	0.175	485
06/29/16 07:13	10,8	0.182	0.000000000 F	0.168561000	0.162	484
06/29/16 07:14	10.8	0.166	0.000000000 F	0.166480000	0,160	484
06/29/16 07:15	10.8	0.146	0.000000000 F	0.175844500	0.169	483
06/29/16 07:16	10.8	0.199	0,000000000 F	0,199776000	0.192	481
06/29/16 07:17	10.7	0.248	0.000000000 F	0.171186560	0.163	482
06/29/16 07:18	10.8	0.196	0.00000000 F	0.141508000	0.136	483
06/29/16 07:19 06/29/16 07:20	10.9	0.138 0.155	0.000000000 F 0.000000000 F	0.137116899	0.133	484
08/29/16 07:21	10.9	0.167	0.000000000 F	0.146395486	0.146 0.142	486
06/29/16 07:22	10.8	0.187	0.00000000 F	0.152963500	0.142	492
08/29/16 07:23	10.8	0.202	0.000000000 F	0.148791500	0.143	488
06/29/16 07:24	10.7	0.206	0.000000000 F	0.157533644	0,150	496
06/29/16 07:25	10.8	0.206	0.000000000 F	0.112374000	0.108	480
06/29/16 07:26	10.9	0.180	0.000000000 F	0.070723453	0.069	477
06/29/16 07:27	10.8	0.149	0.000000000 F	0,090939700	0.087	477
06/29/16 07:28	10.7	0.208	0.00000000 F	0.134428710	0.128	478
06/29/16 07:29 06/29/16 07:30	10.7	0.262	0.000000000 F	0.147031401	0.140	476
06/29/16 07:31	10.8	0.153	0.00000000 F	0.177925500	0.171	477
06/29/16 07:32	10.9	0.204	0.000000000 F	0.195881284	0.190	482
06/29/16 07:33	11.0	0.270	0.000000000 F	0.159366763	0.156	482
06/29/16 07:34	10.8	0.239	0.000000000 F	0.125900500	0.121	483
06/29/16 07:35	10,8	0.203	0.000000000 F	0.127981500	0.123	483
06/29/16 07:36	10.9	0.192	0.000000000 F	0.148457394	0.144	482
09/29/16 07:37	10.9	0.176	0.000000000 F	0.134024036	0,130	481
06/29/16 07:38	10.8	0.206	0.000000000 F	0.130062500	0.125	480
06/29/16 07:39	10.8	0.243	0.000000000 F	0.149832000	0.144	480
06/29/16 07:40	10.8	0.218	0.000000000 F	0.189371000	0.182	479
06/29/16 07:41 06/29/16 07:42	10.9	0.194	0.000000000 F 0.000000000 F	0.178355064 0.167014568	0.173	481 481
06/29/16 07:43	10.8	0.145	0.000000000 F	0.163126000	0.176	481
06/29/16 07:44	10.8	0.194	0.00000000 F	0.211221500	0.176	479
06/29/16 07:45	10.7	0.256	0.000000000 F	0.187990149	0.179	478
06/29/16 07:46	10.8	0.224	0.000000000 F	0.158156000	0.152	477
DG/29/16 07:47	10.8	0.186	0.000000000 F	0.148791500	0,143	478
06/29/16 07:48	10.8	0.192	0.000000000 F	0.155034500	0,149	479
06/29/16 07:49	10.9	0.194	0.000000000 F	0.162890752	0.158	482
06/29/16 07:50	10.9	0.215	0.00000000 F	0.181447926	0.176	486
06/29/16 07:51	10.9	0.233	0.000000000 F	0.142271669	0.138	487
06/29/16 07:52 06/29/16 07:53	10,9	0.174	0.000000000 F	0.080414422	0.078	487
09/2016 07:33	10.0	0.106	0.0000000 F	0.103009500	0.099	486
Average	10.8	0.204	0.000000000	0.147095166	0.142	482
Maimum	10.7	0.106	0.00000000	0.063638570	0,061	476
Maximum	11.0	0.312	0.00000000	0.211221500	0.203	493
Summation	648.6	12.257	0.000000000	8.825709931	8.492	28,917
Included Data Points	60	60	0	60	60	60
Total number of	60	60	60	60	60	60

Average	10.8	0.204	0.000000000	0.147095166	0,142	482
Maimum	10.7	0.106	0.000000000	0.063638570	0,061	476
Maximum	11.0	0.312	0.000000000	0.211221500	0.203	493
Summation	648.6	12.257	0.000000000	8,825709931	8.492	28,917
Included Data	60	60	0	60	60	60
Total number of Data Points	60	60	60	60	60	60
COMB PARMS						

Average Data

Plant: HUNTINGTON PLANT

Interval: 1 Minute

Type: Block Report Period: 06/29/2016 07:59 Through 06/29/2016 08:58 Time Online Criteria: 1 minute(s)

R-6

06/29/16 08:00 10.7 0.223 0.000000000 F 0.190 483 10.7 0.239 0.000000000 F 0.212145308 0.202 482 0.000000000 F 10.7 0.210 0.212 06/29/16 10.7 0.182 0.000000000 F 0.197442168 0.188 483 06/29/16 08:04 10.7 0.201 0.000000000 F 483 06/29/16 08:05 10,7 0.220 0.000000000 F 0.165935439 0.158 06/29/16 10.7 0.235 0.178538130 0.170 10.7 0.249 0.000000000 F 0.181 484 0.213195532 06/29/16 08:08 10.7 0.205 0.000000000 F 481 0.203 10.7 0.163 0.000000000 F 0.193241271 0.184 08:10 10.6 0.000000000 F 0.161 10.6 0.176 0.000000000 F 0.133576641 476 0.126 10.6 0.224 0.000000000 F 0.111313867 0.105 10.6 0.285 0.000000000 F 0.124035452 0.117 478 0.154 479 10.7 0.243 0.000000000 F 0.155433196 0.148 06/29/16 0.221 0.00000000 F 0.155839415 0.147 10.7 06/29/16 0.193 0.157533644 0.150 0.214 0.175387457 0,167 484 06/29/16 0.228 0.154 485 0.163260336 06/29/16 10.6 0.217 0.000000000 F 0.159019811 0.150 486 06/29/16 08:21 10.7 0.202 0.000000000 F 0.147031401 0.140 485 06/29/16 08:22 10.6 0.223 0.000000000 F 0.146298226 0.138 484 06/29/16 08:23 10.5 0.242 0.126286971 0.118 481 06/29/16 08:24 10.5 0.247 0.000000000 F 0.114514457 479 0.107 06/29/16 10.5 0.000000000 F 0.112374000 08:25 0.246 0,105 479 06/29/16 08:26 10.6 0.241 0.122975320 479 0.000000000 F 0.116 06/29/16 08:27 10.6 0.231 0.000000000 F 0.108133471 0,102 480 06/29/16 08:28 10.5 0.000000000 F 0.218 0.100601485 0.094 480 06/29/16 08:29 10.5 0.199 0.000000000 F 0.119865600 0.112 481 06/29/16 08:30 10,5 0.190 0.000000000 F 0.158393828 0.148 482 06/29/16 10.6 0.175 0.000000000 F 0,159019811 08:31 0.150 483 10.7 08:32 0.207 06/29/16 0.000000000 F 0.168035887 0.160 483 08:33 10.7 06/29/16 0.233 0.000000000 F 0.152282523 0.145 484 08:34 10.6 06/29/16 0.216 0.000000000 F 0.148418490 486 0.140 08:35 10.6 0.185 06/29/16 0.000000000 F 0.133576641 0.126 485 06/29/16 08:36 10.6 0.202 0.000000000 F 0.131456377 0.124 484 06/29/16 08:37 10.6 0.215 0.000000000 F 0.128275981 484 0.121 0.136989257 06/29/16 08:38 10.5 0.228 0.000000000 F 0,128 482 10.5 0,236 480 06/29/16 08:39 0.000000000 F 0.129497657 0.121 06/29/16 08:40 10.5 0.217 0.000000000 F 0.132708342 0.124 479 06/29/16 10.5 0.185 0.114514457 479 08:41 0.000000000 F 0.107 06/29/16 08:42 0.192 0.000000000 F 10.6 0.106013207 0,100 481 10.6 0.157959679 482 06/29/16 08:43 0.193 0.000000000 F 0.149 06/29/16 08:44 10.6 0.184 0.000000000 F 0.232168924 0.219 484 06/29/16 08:45 10.6 0.171 0.000000000 F 0.238529717 0.225 483 06/29/16 0.163 0.000000000 F 0.244890509 08:46 10.6 0.231 484 06/29/16 08:47 10.6 0.149 0.000000000 F 0.194004169 0.183 484 06/29/16 08:48 0.184 0.000000000 F 0.146298226 484 10.6 0.138 0.172801528 484 06/29/16 08:49 10.6 0.212 0.0000000000 F 0.163 06/29/16 08:50 0.000000000 F 0.225808132 10.6 0.218 0.213 484 485 06/29/16 08:51 10.6 0.219 0.000000000 F 0.167500867 0.158 06/29/16 08:52 10.6 0.221 0.000000000 F 0.103574903 0.098 485 06/29/16 08:53 10.7 0.217 0.000000000 F 0.137579383 0.131 485 06/29/16 08:54 10,7 0.239 0.000000000 F 0.202693289 0.193 484 06/29/16 08:55 10.6 0.256 0.000000000 F 0.138877301 0.131 481 06/29/16 08:56 10.4 0.250 0.000000000 F 0.063426478 0.059 478 06/29/16 08:57 10.5 0.239 0.000000000 F 0.087437674 0.082 476 06/29/16 08:58 10.5 0.252 0.000000000 F 0.143410628 0.134 477

Average	10.6	0.214	0.000000000	0,155385239	0.147	482
Minimum	10.4	0.149	0.000000000	0.063426478	0.059	476
Maximum	10.7	0.285	0.000000000	0.244890509	0.231	486
Summation	636.5	12.867	0.000000000	9.321914365	8.810	28,908
Included Data	60	60	0	60	60	60
Total number of	60	60	60	60	60	60

Average Data

Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/29/2016 10:01
Time Online Criteria: 1 minute(s)

R-7

Sou	rce [NIT1		
Paran (Un	neter	CO2 (PCT)	HG0 (UG/M3)	HGLB/MM (LB/MMBTU)	HGLB/T (LB/TBTU)	HGT (UG/SCM)	UNITLOAD (MW)
06/29/16	09:02	10,7	0.203	0.000000000 F	0.182739028	0.174	486
06/29/16	09:03	10.7	0.203	0.000000000 F	0.154382972	0.147	486
06/29/16	09:04	10,6	0.178	0.000000000 F	0.134636773	0.127	486
06/29/16	09.05	10,6	0.147	0.000000000 F	0.129336113	0.122	485
06/29/16	09:06	10.6	0.176	0.000000000 F	0.140997566	0.133	482
06/29/16	09:07	10.6	0.200	0.000000000 F	0.145238094	0.137	478
06/29/16	09:08	10.5	0.212	0.000000000 F	0.163744971	0.153	476
06/29/16	09:09	10.5	0.218	0.000000000 F 0.000000000 F	0.149832000	0.140	476
06/29/16	09:11	10.6	0.243	9,00000000 F	0.144480857 0.152659018	0.135	477 478
06/29/16	09:12	10.7	0.239	0.000000000 F	0.175387457	0.167	482
06/29/16	09:13	10.7	0.211	0.000000000 F	0.127077140	0.121	483
06/29/16	09:14	10.8	0.216	0.000000000 F	0.077829400	0.075	486
06/29/16	09:15	10.7	0.216	0.000000000 F	0.107122878	0.102	487
06/29/16	09:16	10.6	0.270	0.000000000 F	0.163260339	0.154	485
06/29/16	09:17	10.7	0.319	0.000000000 F	0.161734542	0.154	484
06/29/16	09:18	10.6	0.269	0.000000000 F	0.165380603	0.156	484
06/29/16	09:19	10.6	0.214	0.000000000 F	0.178102188	0.168	482
06/29/16	09:20	10.6	0.208	0.000000000 F	0.207785886	0.196	481
06/29/16	09:21	10.7		0.00000000 F	0.171186560	0.163	479
06/29/16	09:22	10.7	0.225	0.000000000 F 0.000000000 F	0.121826018	0.116	478 481
06/29/16	09:24	10.6	0.241	200000000 F	0.121915188	0.106	485
06/29/16	09:25	10.8	0.226	9,00000000 F	0.147751000	0.142	488
06/29/16	09:26	10.7	0.228	0:000000000 F	0.194291495	0,185	489
06/29/16	09:27	10.7	0.223	0.000000000 F	0.166965663	0.159	489
06/29/16	09:28	10.7	0.206	0.000000000 F	0.144930953	0.138	485
	09:29	10.7	0.176	0.000000000 F	0.131278037	0.125	479
	09:30	10.7	0.214	0.000000000 F	0.138629607	0.132	473
	09:31	10.7	0.256	0.000000000 F	0.139679831	0.133	470
	09:32	10.7	0.212	0.00000000 F	0.154382972	0.147	471
	09:34	10.8	0.164 0.169	0.00000000 F	0.142830504	0.136	476
	09:35	10.9	0.183	0.00000000 F	0.168045522	0.131 0.163	482 484
	09:36	10.8	0.228	0.000000000 F	0.224748000	0.216	486
	09:37	10.9	0.261	0.000000000 F	0.214438458	0.208	486
06/29/16	09:38	10.8	0.254	0.000000000 F	0.203938000	0,196	485
06/29/16	09:39	10.8	0.238	0.000000000 F	0.174804000	0.168	484
06/29/16	09:40	10.8	0.215	0.000000000 F	0.142548500	0.137	482
	09:41	10.8	0.189	0.000000000 F	0.136305500	0.131	482
~~~	09:42	10.8	0.177	0.000000000 F	0.146710500	0.141	482
	09:43 09:44	10.9	0.160	0.000000000 F	0.180416972	0.175	484
	29:45	10.9	0.191	0.00000000 F	0.229902770 D.224748000	0.223	485
	9:46	10.8	0.209	0.000000000 F	0.222667000	0.214	487
06/29/16 0	9:47	10.9	0.194	0.000000000 F	0.184540789	0.179	484
	9:48	10.8	0.202	0.000000000 F	0.144629500	0.139	482
06/29/16 0	9:49	10.7	0.207	0.000000000 F	0.136529156	0.130	479
06/29/16 0	9:50	10.7	0.256	0.000000000 F	0.144930963	0.138	478
06/29/16 0	9.51	10.7	0.299	0.000000000 F	0.141780280	0.135	476
	9.52	10.7	0.255	0.000000000 F	0.150182074	0.143	478
	9.53	10,8	0.206	0.000000000 F	0.115495500	0.111	479
	9:54 9:55	10,8	0.208	0.000000000 F	0.088962750	0.085	480
	9:56 9:56	10.9	0.203	0.000000000 F	0.079795849	0.077	481
	9:57	10.9	0.202	0.000000000 F	0.087218719	0,085	483 488
	9.58	11.0	0.197	0.00000000 F	0.145064618	0.142	492
	9:59	11.0	0.193	0.000000000 F	0.159366763	0.156	497
	0:00	10.9	0.210	0.000000000 F	0.181447926	0.176	498
06/29/16 10	0:01	10.8	0.224	0.000000000 F	0.158156000	0.152	495
************					***************************************		
	erage	10.7	0.216	0.000000000	0.153045840	0.146	483
	imum imum	10.5	0.147	0.000000000	0.077829400	0.075	470
Maxi		11.0 644.3	0.319	0.00000000	0.229902770	0.223	498
Summ	negoni	644.3	12.958	0.000000000	9.182750391	8.777	28,972
Included I Potal numb	our of	60 60	60 60	0 60	60 60	60 60	60 60

Average Data
Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 06/29/2016 10:05 Through 06/29/2016 11:04
Time Online Criteria: 1 minute(s)

				Firme Online Criteria			
	ource	CO2	HG0	HGLB/MM	JNIT1 HGL8/T	HGT	UNITLOAD
	ameter Unit)	(PCT)	(UG/M3)	(LB/MMBTU)	(LB/TBTU)	(UG/SCM)	(MW)
06/29/16	10:05	10.6	0.211	0.000000000 F	0.110253735	0.104	462
06/29/16		10.5	0.244	0.000000000 F	0.143410628	0,134	463
06/29/16	10:07	10.6	0.272	0.000000000 F	0.172801528	0.163	469
06/29/16	10:08	10.6	0.243	0.000000000 F	0.214146679	0.202	474
06/29/16	10:10	10.8	0.244	0.000000000 F	0.284056500	0.273	479
06/29/16	10:11	10.8	0.275	0.000000000 F	0.240355500	0.231	481
06/29/16	10:12	10.8	0.275	0.000000000 F	0.193533000	0.186	481
06/29/16	10:13	10.8	0.269	0.000000000 F	0.149832000	0.144	482
06/29/16	10:15	10.8	0.252	0.00000000 F	0.118617000 0.134224500	0.114	484
06/29/16	10:16	10.8	0.207	0.000000000 F	0.165439500	0.159	486
06/29/16	10:17	10.8	0.172	0.000000000 F	0.177925500	0,171	485
06/29/16	10:18	10.8	0.196	0.000000000 F	0.192492500	0,185	483
06/29/16	10:19	10.8	0.214	0.000000000 F	0.180006500	0.173	481
06/29/16	10:21	10.7	0.210	0.000000000 F	0.178437662	0.168	480
06/29/16	10:22	10.6	0.213	0.000000000 F	0.181282584	0.171	479
06/29/16	10:23	10.6	0.211	0.000000000 F	0.146298226	0.138	480
06/29/16	10:24	10.6	0.220	0.000000000 F	0.114494264	0.108	481
06/29/16	10:25	10.6	0.223	0.000000000 F	0.147358358	0.139	481
06/29/16	10:20	10.6	0.223	0.000000000 F	0.225808132	0.213	482
06/29/16	10:28	10.7	0.225	0.000000000 F	0.158583869	0.151	484
06/29/16	10:29	10.6	0.228	0.000000000 F	0.147358358	0.139	483
06/29/16	10:30	10.6	0.222	0.000000000 F	0.148418490	0.140	482
06/29/16	10:31	10.6	0.212	0.000000000 F 0.000000000 F	0.169621132	0.160	482
06/29/16	10:32	10.5	0.218	0.000000000 F	0.207624342	0.194	480 478
06/29/16	10:34	10.5	0.252	0.000000000 F	0.208694571	0.195	476
06/29/16	10:35	10.6	0.290	0.000000000 F	0.195064301	0.184	476
06/29/16	10:36	10.5	0.283	0.000000000 F	0.192641142	0,180	476
06/29/16	10:37	10.5	0.270	0.000000000 F	0.173377028	0.162	477
06/29/16	10:39	10.6	0.221	0.000000000 F 0.000000000 F	0.162200207 D.177042056	0.153 0.167	478
06/29/16	10:40	10.7	0.176	0.000000000 F	0.202693289	0.193	479 482
06/29/16	10:41	10.5	0.181	0.000000000 F	0.172306800	0.161	487
06/29/16	10:42	10.5	0.186	0.000000000 F	0.133778571	0.125	489
06/29/16 06/29/16	10:43 10:44	10.6	0.186	0.000000000 F	0.153719150	0.145	490
06/29/16	10:45	10.5	0.189	0.000000000 F	0.198244696	0.167	489
06/29/16	10:46	10,4	0.214	0.000000000 F	0.158836326	0.147	478
06/29/16	10:47	10.5	0.230	0.000000000 F	0.128427428	0.120	473
06/29/16	10:48	10.4	0.212	0.000000000 F	0.101784911	0,094	473
06/29/16 06/29/16	10:49	10.5	0.185	0.000000000 F 0.000000000 F	0.159464057	0,149	473
06/29/16	10:51	10.5	0.227	0.00000000 F	0.244012114 0.217256400	0.228	472 473
06/29/16	10:52	10.5	0.213	0.000000000 F	0.184079314	0.172	476
06/29/16	10:53	10.6	0.195	0.000000000 F	0.160079943	0.151	480
06/29/16	10:54	10.6	0.187	0.000000000 F	0.152659018	0.144	482
06/29/16 06/29/16	10:55 10:56	10.5	0.173	0.000000000 F	0.145551085 0.147358358	0.136	483
	10.57	10,7	0.209	0,000000000 F	0.124976691	0.139	485 486
06/29/16	10:58	10.6	0.217	0.000000000 F	0.113434132	0,107	486
	10:59	10.5	0.220	0.000000000 F	0.138069485	0.129	487
	11:00 11:01	10.5	0.227	0.000000000 F	0.178726171	0.167	486
	11:01	10.5	0.229	0.000000000 F	0.154112914	0.144	484 479
	11:03	10.4	0.217	0.000000000 F	0,145870096	0.135	477
6/29/16	11:04	10.4	0.222	0.000000000 F	0.177206153	0.164	475
				***************************************	***************************************		***************************************
	kvarage	10.6	0.219	0.000000000	0.170375496	0,161	480
	nimum ximum	10.4	0.167	0.000000000	0.101784911 0.284056500	0.094	462
	mation	635.9	13.167	0.000000000	0.284056500	0.273 9.645	490 28,798
Included mun latoT enero	Points	60 60	60 60	0	60 60	60	60 60

F = Unit Offline F = Unit Offline
E = Exceedance
I = Invalid
M = Maintenance
Report Generated On 19 to 11:222

Page 39 of 52

Average Data
Plant: HUNTINGTON PLANT
Interval: 1 Minute
Type: Block
Report Period: 08/29/2016 11:09 Through 08/29/2016 12:08
Time Online Criteria: 1 minute(s)



	Source			Time Online Official	NIT1		
Pa	rameter (Unit)	CO2 (PCT)	HG0 (UG/M3)	HGLB/MM (LB/MMBTU)	HGLB/T (LB/TBTU)	HGT (UG/SCM)	UNITLOAD (MW)
06/29/1	6 11:09	10.5	0.254	0.000000000 F	0.154112914	0.144	465
06/29/1		10.6	0.215	0.000000000 F	0.130396245	0.123	487
06/29/1		10.6	0.174 0.175	0.00000000 F	0.113434132	0.107	487 483
06/29/1		10.6	0.171	900000000 F	0.109193603	0.102	453
06/29/1	B 11:14	10.5	0.223	@00000000 F	0.125216742	0.117	477
06/29/16	3 11:15	10.5	0.270	0,000000000 F	0.164815200	0.154	476
06/29/10		10.5	0.255	0:00000000 F	0.22046708S	0.206	476
06/29/10		10.6	0.235	0.000000000 F	0.184462981 0.147358358	0.174	478 480
06/29/16		10.6	0.226	0.00000000 F	0.136757037	0.129	482
06/29/16	11:20	10.6	0.248	0.000000000 F	0.143117830	0.135	482
06/29/16		10.6	0.265	0:000000000 F	0.148418490	0.140	481
06/29/16		10.6	0.235	0.00000000 F	0.166440735	0.157	480
06/29/16		10.6	0.195	0.0000000 F	0.174921792	0.165	480
06/29/16		10.6	0,184	6.000000000 F	0.164320471	0.155	481
06/29/16		10.6	0.171	0.000000000 F	0.137817169	0.130	482
06/29/16		10.6	0.156	©200000000 F	0.172801528	0.163	484
06/29/16	11:28 11:29	10.7	0.167 0.176	0.00000000 F	0.252053831	0.240	485
06/29/16	11:30	10.6	0.167	00000000 F	0.214146679	0.202	485 485
06/29/16	11:31	10.5	0.195	0.000000000 F	0.203343428	0.190	484
06/29/16	11:32	10.5	0.174	0,000000000 F	0.266486914	0.249	482
06/29/16	11:33	10.5	0.149	0.000000000 F	0.227958885	0.213	481
06/29/16	11:34	10.5	0.168	0.000000000 F	0.183009085 0.170681264	0.171	480
06/29/16	11:36	10.6	0.193	0.00000000 F	0.178102188	0.168	480
06/29/16	11:37	10.5	0.200	200000000 F	0.227958685	0.213	481
06/29/16	11:38	10.5	0.202	0:000000000 F	0.294312857	0.275	481
06/29/16	11:39 11:40	10.5	0.199	0.00000000 F	0.246152571	0.230	481
06/29/16	11:40	10.5	0.204	0.000000000 F	0,190500685 0,158393828	0.178	481
06/29/16	11:42	10.6	0.214	0.000000000 F	0.139937434	0.132	483
06/29/16	11:43	10,5	0.220	0.000000000 F	0.141270171	0.132	482
06/29/16	11:44	10.5	0.222	0.000000000 F	0.155183142	0.145	482
06/29/16	11:45 11:46	10.5 10.5	0.219	0.000000000 F	0.122006057	0.114	482
06/29/16	11:47	10,6	0.261	0:00000000 F	0.114494264	0.108	482
06/29/16	11:48	10.5	0.238	@000000000 F	0.154112914	0.144	482
06/29/16	11:49	10.5	0.200	6:00000000 F	0.135919028	0,127	483
06/29/16	11:50 11:51	10.5	0.259	0.000000000 F	0.111303771	0.104	483
06/29/16	11:52	10.5	0.256	0.00000000 F	0.212975485	0.140	483 482
06/29/16	11:53	10.5	0.193	0.000000000 F	0.191570914	0.179	481
06/29/16	11:54	10.4	0.206	0.000000000 F	0.168561000	0.156	481
06/29/16	11:55 11:56	10.4	0.214	000000000 F	0.162077884	0.150	483
06/29/16	11:57	10.4	0.152	0,00000000 F	0.169641519	0.157	485 485
06/29/16	11:58	10.4	0.204	0.00000000 F	0.186929826	0.173	482
06/29/16	11:59	10.4	0.252	0.000000000 F	D.159916846	0.148	484
06/29/16	12:00	10.5	0.209	6.000000000 F	0.135919028	0.127	478
06/29/16	12:01	10.4	0.161	0.000000000 F	0.116696076 0.105631560	0.108	473 472
06/29/16	12:03	10.5	0.230	8,000000000 F	0.164815200	0.154	474
06/29/16	12:04	10.6	0.248	0.000000000 F	0.245950641	0.232	474
06/29/16	12:05	10.6	0.260	0.900000000 F	0.175981924	0.168	474
06/29/16	12:06	10.6	0.236	0.000000000 F 0.000000000 F	0.092337503	0.087	478 481
06/29/16	12:08	10.7	0.204	0.000000000 F	0.103762160	0.099	480
	Average	10.5	0.211	0.00000000	0.164183405	0.154	481
	Mnimum	10.4	0.149	0.000000000	0.086082724	0.081	472
	Maximum	10.7	0,315	0.000000000	0.294312857	0.275	487
Sı	immation	632.1	12.689	0.000000000	9.851004309	9.234	28,860
Includ	fed Data	60	60	0	60	60	60
	Points amber of	60	60	60	60		~

F = Unit Offline E = Exceedance

M = Maintenppe | Color | PC16-0031: Huntington Unit 1 Hg RATA

### Mercury Calibration Standard Certificates Dry Gas Meter Pre-Test and Post-Test Calibrations

**Reference Meter Calibration Certificate** 



### Ohio Lumex Company, Inc.

9263 Ravenna Rd. Unit A-3 Twinsburg, Ohio 44087 Toll Free (888) 876 2611, (330) 405 0837, Fax. (330) 405 0847 www.ohiolumex.com

### Certified Reference Material (Mercury Standard) Certificate of Analysis

### 1.0 ACCREDITATION / REGISTRATION

The certified reference material manufacturer is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" (A2LA certificate number 883.02) and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories" (A2LA certificate number 883.01) and it's also ISO 9001 registered (SAI Global File Number 010105).

### 2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

RPM-039

Lot Number:

H2-MEB533093

Matrix:

10% (v/v) HCI

Value / Analyte(s):

0.1 µg/mL ea:

Hg

### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

**ANALYTE** 

**CERTIFIED VALUE** 

ANALYTE

CERTIFIED VALUE ANALYTE

**CERTIFIED VALUE** 

Mercury

0.1000 ± 0.0006 µg/mL

1.020 g/mL (measured at 20 ± 1 °C)

### Certified Density: Assay Information:

**ANALYTE** 

METHOD

NIST SRM#

SRM LOT#

Hg

ICP Assay

3133

061204

Hg

**EDTA** 

928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of

Certified Value  $(\overline{x}) = \underline{\Sigma} \underline{x}_i$ 

 $(\bar{x}) = mean$ 

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [ $\Sigma(s_i)^2$ ] ^{1/2}

2 = the coverage factor.

 $\left[\left.\sum(s_i)^2\right]^{\mathcal{H}}$  = The square root of the sum of the squares of the most common errors (where s stands for the standard deviation) from Instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

### 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.



### Ohio Lumex Company, Inc.

9263 Ravenna Rd. Unit A-3 Twinsburg, Ohio 44087 Toll Free (888) 876 2611, (330) 405 0837, Fax. (330) 405 0847 www.ohiolumex.com

### Certified Reference Material (Mercury Standard) Certificate of Analysis

1.0 This Certified Reference Material is distributed by Ohio Lumex and has been manufactured under ISO Guide 34, ISO 17025 and ISO 9001 guidelines by an accredited/registered laboratory. A2LA accredited Reference Material Producer Certificate Number 0883.02. A2LA accredited Testing Laboratory Certificate Number 0883.01. SAI Global registered Quality Management System File Number 010105.

2.0 DESCRIPTION OF CRM

1 µg/mL Mercury in 10% v/v HCI

Catalog No.:

RPM-043

Lot Number:

G2-MEB484113

Matrix:

10% HCI(v/v)

1 μg/mL ea:

Hg

### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT

CERTIFIED VALUE

ELEMENT

**CERTIFIED VALUE** 

ELEMENT

CERTIFIED VALUE

Mercury, Hg

 $1.001 \pm 0.007 \, \mu g/mL$ 

Certified Density:

1.020 g/mL (m

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value  $(\overline{x}) = \frac{\sum x}{n}$ 

 $(\bar{x}) = mean$ 

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [ $\Sigma(s_i)^2$ ]^½

2 = the coverage factor.

 $\left[ \; \Sigma(s_i)^2 \; \right]^{\frac{1}{2}} =$  The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

### 4.0 TRACEBILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

^{· &}quot;Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

⁻ The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.



### Ohio Lumex Company, Inc.

9263 Ravenna Rd. Unit A-3 Twinsburg, Ohio 44087 Toll Free (888) 876 2611, (330) 405 0837, Fax. (330) 405 0847 www.ohiolumex.com

### Certified Reference Material (Mercury Standard) Certificate of Analysis

1.0 This Certified Reference Material is distributed by Ohio Lumex and has been manufactured under ISO Guide 34, ISO 17025 and ISO 9001 guidelines by an accredited/registered laboratory. A2LA accredited Reference Material Producer Certificate Number 0883.02. A2LA accredited Testing Laboratory Certificate Number 0883.01. SAI Global registered Quality Management System File Number 010105.

2.0 DESCRIPTION OF CRM

10 µg/mL Mercury in 10% (v/v) HCL

Catalog Number:

RPM-042

Lot Number:

G2-HG02119MCA

Starting Material:

Hg metal

Starting Material Purity (%):

99.9997

Starting Material Lot No:

1780

Matrix:

10% (v/v) HCL

### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

**Certified Concentration:** 

 $9.991 \pm 0.073 \,\mu g/mL$ 

Certified Density:

1.024 g/mL (measured at 20  $\pm$  1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

### Characterization of CRM by two independent methods

### Characterization of CRM by one method

Certified Value,  $X_{CRM}$ , where two methods of characterization are used, is the weighted mean of the two results =  $[(w_a) \{X_a\} + \{w_b\} (X_b)]$ 

Xa is the mean of Assay Method A with standard uncertainty Umara.

Xb is the mean of Assay Method B with standard uncertainty Ucharb.

 $\mathbf{w}_a$  and  $\mathbf{w}_b$  = The weighting factors for each method calculated using the inverse square of the variance:

 $W_a = (1/U_{chara})^2 f((1/U_{chara})^2 + (1/U_{charb})^2));$ 

 $W_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$ 

CRM Expanded Uncertainty (±) =  $U_{CRM} = k \left(U_{char}^2 + u_{bb}^2 + u_{bb}^2 + u_{sts}^2\right)^{\frac{1}{2}}$ 

 $U_{cbar}$   $a_{b}$  =  $[(w_a)^2 (U_{cbar})^2 + (w_b)^2 (U_{crop})^2]^{0.5}$ ;  $U_{cbar}$  a and  $U_{cbar}$  b are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures;  $u_{bb}$  = bottle to bottle homogeneity standard uncertainty;  $u_{tk}$  = long term stability standard uncertainty (storage);  $u_{tk}$  = short term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 $X_a$  = Mean  $X_a$  is the mean of Assay Method A with standard uncertainty  $U_{chat}$ _a.

CRM Expanded Uncertainty (±) =  $U_{CRM} = K (U_{Char}^2 + u_{DD}^2 + u_{DD}^2 + u_{DD}^2)^{\frac{1}{2}}$ 

 $U_{char}$   $_2$  is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at longranic Ventures;  $u_{bb}$  = bottle to bottle homogeneity standard uncertainty;  $u_{tts}$  = long term stability standard uncertainty (storage);  $u_{sts}$  = short term stability standard uncertainty (transportation).

### 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons to the following NIST SRMs:



## APEX INSTRUMENTS METER CONSOLE CALIBRATION

Meter Console Information

Console Model XC-260	XC-260	Console Serial Number	909012-A	Encoder Model HEDS-9100-F00
Gas Meter Model	SK25	Totalizer Scale Factor (Initial)	1.0000	Totalizer Model RED LION
Gas Meter Serial# 8005125	8005125	Totalizer Scale Factor (Final)	0.9714	Temp Display Model JENCO

		Calibration Conditions	onditions			
WTM ID	WTM ID 539783	Calibration Technician		EW		Calibration Date 15-Sep-09
TM Cal Factor	1.0001	Barometric Pressure	(Pb)	754	754 mm Hg	

					Calibrat	Calibration Data						Results	
	Run Time	d)	Dry Gas Meter	Meter :		Wet Test Meter	. Meter	Stand	Standardized Volumes		Totalian	2	
		Gas	Gas	Gas	Gas Totalizer	Gas	Gas	Totalizer	Totalizer	Gas Totalizer Totalizer Wet Test	Oralize	Gallina	Flowrate
	Elapsed	Elapsed Pressure Volume Temp Display Volume Temp Initial SF Final SF Meter	Volume	Temp	Display	Volume	Temp	Initial SF	Final SF	Meter	Final	Final Variation	
	(Θ)	(P _m )	(V _m )	(t _m )		(\^\)	(t _w )	(V _{m(std)} )	$(V_{m(std)})$ $(V_{m(std)})$ $(V_{w(std)})$	(V _{w(std)} )	3	(AY)	(Qm)
	min	mm H ₂ O liters	liters	ပ္	liters	liters	ပ	std liters	std liters std liters std liters	std liters			slm
n 1 - Initial	00.00	0	0	23.30	0.000	459.115	23.5						
Final	5.00	0	0	23.89	13.021	471.769	24						
Total/Avg	2 00	0	0	23.60	13.021	12.654	23.75	12.771	12.405	23.60 13.021 12.654 23.75 12.771 12.405 12.405 1.000 0.000 2.48	1.000	0.000	2.48

	uim	mm H ₂ C	liters	ပ္	liters	liters	ې	std liters	std liters std liters std liters	std liters			SILII
Run 1 - Initial	0.00	0	0	23.30	0.000	459.115	23.5						
Final	5.00	0	0	23.89	13.021	471.769	24						
Total/Avg	5.00	0	0	23.60	13.021	12.654	23.75	12.771	12.405	12.405	1.000	0.000	2.48
Run 2 - Initial	0.00	0	0	23.89	13.021	471.769	24						
Final	00.9	0	0	23.89	25.800	484.126	24						
Total/Avg	6.00	0	0	23.89	12.779	12.357	24	12.521	12.163	12.104	0.995	-0.005	2.02
Run 3 - Initial	0.00	0	0	23.89	25.800	484.126	24						
Final	7.00	0	0	23.89	36.817	494.833	24						
Total/Avg	7.00	0	0	23.89	11.017	10.707	24	10.794	10.486	10.488	1.000	0.000	1.50
Run 4 - Initial	0.00	0	0	23.89	36.817	494.833	24						
Final	12.00	0	0	24.44	48.934	506.569	24.0						
Total/Avg	12.00	0	0	24.17	12.117	11.736	24.0	11.861	11.522	11.496	0.998	-0.002	96.0
Run 5 - Initial	0.00	0	0	24.44	48.934	506,569	24.0						
Final	24.00	0	0	24.44	62.737	520.047	24.0						
Total/Avg	24.00	0	0	24.44	13.803	13.478	24.0	13.499	13.113	13.202	1.007	0.007	0.55

Average Meter Calibration Factor Y

1.000

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60 using a Precision Wet Test Meter, which in turn was calibrated using the Appara Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N I S.T.).

Note: For Calibration Factor V, the ratio of the reading of the calibration meter to the dygas meter, acceptable tolerance of individual values from the average is +-0.02.

316 2/15/09





## APEX INSTRUMENTS METER CONSOLE CALIBRATION

Meter Console Information

Console Model XC-260	XC-260	Console Serial Number	909012-B	Encoder Model HEDS-9100-F00
Gas Meter Model SK25	SK25	Totalizer Scale Factor (Initial)	1.0000	Totalizer Model RED LION
Gas Meter Serial# 8005121	8005121	Totalizer Scale Factor (Final)	0.9765	Temp Display Model JENCO

alibration Conditions	ician EW Calibration Date 15-Sep-09	ssure (Pb) 754 mm Hg
Calibration	784 Calibration Technician	.0024 Barometric Pressure
	WTM ID 539784	WTM Cal Factor 1.0

				Calibrat	Calibration Data						Results	
Run Time		Dry Gas	Dry Gas Meter		Wet Test Meter	t Meter	Standa	Standardized Volumes		Totaliza	Camma	
	Gas	Gas	Gas	Gas Gas Totalizer	Gas	Gas	Gas Totalizer Totalizer Wet Test	Totalizer	Wet Test	Otalize	Gallia	Flowrate
p	Elapsed Pressure Volume Temp Display Volume Temp Initial SF Final SF	Volume	Temp	Display	Volume	Temp	Initial SF	Final SF	Meter	Final	Final Variation	1
	(P _m )	(V _m )	(t _m )		(^^)	(t _w )	(V _{m(std)} )	(V _{m(std)} ) (V _{m(std)} )	$(V_{w(std)})$	3	(AY)	(Qm)
min	mm H ₂ O liters	liters	ပ္	liters	liters	ွ	std liters	std liters	std liters std liters			slm

		1000		23332		152 2000		100000000000000000000000000000000000000					
	min	mm H ₂ O	liters	ွ	liters	liters	ွ	std liters	std liters	std liters			slm
Run 1 - Initial	0.00	0	0	23.89	0.000	449.028	23.5						
Final	5.00	0	0	24.44	14.190	462.731	24						
Total/Avg	5.00	0	0	24.17	14.190	13.703	23.75	13.891	13.564	13.465	0.993	-0.007	2.70
Run 2 - Initial	0.00	0	0	24.40	14.190	462.731	24						
Final	6.00	0	0	24.44	27.087	475.192	24						
Total/Avg	00.9	0	0	24.42	12.897	12.461	24	12.614	12.317	12.234	0.993	-0.007	2.04
Run 3 - Initial	0.00	0	0	24.44	27.087	475.192	24						
Final	7.00	0	0	25.00	38.163	485.960	24						
Total/Avg	7.00	0	0	24.72	11.076	10.768	24	10.822	10.568	10.572	1.000	0.000	1.51
Run 4 - Initial	0.00	0	0	25.00	38.163	485.960	24						
Final	12.00	0	0	25.00	50.813	498.303	24.0						
Total/Avg	12.00	0	0	25.00	12.650	12.343	24.0	12.348	12.058	12.118	1.005	0.005	1.01
Run 5 - Initial	0.00	0	0	25.00	50.813	498.303	24.0						
Final	24.00	0	0	25.56	66.847	513.990	24.0						
Total/Avg	24.00	0	0	25.28	16.034	15.687	24.0	15.637	15.269	15.401	1.009	0.009	0.64

Average Meter Calibration Factor Y

1.000

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using a Precision Wet Test Meter. which in turn was calibrated using the Agpancian Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N I S T.)

Electronic Totalizer Y vs Standardized Flowrate



### **Temperature Sensor Calibration Data Sheet**

Unit	XC-260	Serial #	0909012	
Date	9/15/2009	ThermoCouple No	Model Altek Ser	ies 22 Type K
Personnel	EW	Reference	105795	
Ambient temp		ASTM Mercury-In-	Glass ID	
		NIST Reference T	CID	90728323

Date	Reference Point Number	Source (specify)	Reference Thermometer Temperature F	Thermocouple Display Temperature F	Absolute Temperature Difference %
	1		100	98	0.4
	2		200	200	0.0
	3		300	300	0.0
	1		500	498	0.2
	2		700	701	-0.1
	3		900	901	-0.1
	1		1100	1101	-0.1
	2		1500	1501	-0.1
	3		1900	1902	-0.1
	1				
	2				
	3				
	1				
	2				
	3				
	1				
	2				
	3				
	1				
	2				
	3				
	1				
	2				
	3				
					0.023

Checked By (Personnel (Sign/Date)

Team Leader (Signature/Date)

# METHOD 30B DRY GAS METER POST-CALIBRATION USING METRIC REFERENCE METER

- Record data and information in the GREEN cells; YELLOW cells are calculated. Connect meterbox to Reference Meter.
   Record barometric pressure before and after calibration procedure.
   Run at maximum tested sample rate for a period of 20 minutes.
   Record data and information in the GREEN cells; YELLOW cells are 5) If the Post-Cal Y differs from the Pre-Cal by less than 5%, no adjust
- If the Post-Cal Y differs from the Pre-Cal by less than 5%, no adjustments are necessary.



		(3)	>	(unitless)	0.974	1.026		0.982	1.000
		(2)	V _m (STD)	(m ₃ )	0.0042	0.0042		0.0042	ACTOR, Y = ACTOR, Y =
		(1)	V _{cr} (STD)	(m ₃ )	0.0041	0.0043		0.0041	S METER CALIBRATION FACTOR, Y = PRE-TEST CALIBRATION FACTOR, Y =
		ELAPSED	TIME (MIN)	θ	5.00	5.00		5.00	GAS METER C. PRE-TEST C
FINAL	24.63		(7	NET (V _m )	5.074	5.011		5.027	AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = PRE-TEST CALIBRATION FACTOR, Y =
INITIAL	24.63	ER	DGM READINGS (L)	FINAL	5.074	5.011		5.027	
L	JRE (in Hg):	30B DRY GAS METER	DGN	INITIAL	0.000	0.000		0.000	
	BAROMETRIC PRESSURE (in Hg):	30B [	DGM TEMP.	(°F)	62	62		61	
	BAROM		FLOW	RATE (LPM)	-	-		-	
30B-1A	0.9965								
METER ID #:	REFERENCE METER Y:		m³)	NET (V _{cr} )	0.0050	0.0052		0.0050	
	REFERENC	E METER	DGM READINGS (m³)	FINAL	12.0656	12.0708		12.0758	
		REFERENCE METER	DGI	INITIAL	12.0606	12.0656		12.0708	
6/30/2016	ws		DGM TEMP.	(°F)	99	99		99	
DATE	OPERATOR:			RUN #	<b>-</b>	2	a L	င	

(<2%)					1					
0.59%		(3)	>	(unitless)		0.986		2	0.994	
DIFFERENCE =		(2)	V _m (STD)	(m³)		0.0042	2000	0.0042	0.0042	
莅		(1)	V _{cr} (STD)	(m ₃ )		0.0041	0 0043	2000	0.0042	
		ELAPSED	TIME (MIN)	θ		5.00	9		5.00	
	FINAL 24.63		9	NET (V _m )		5.006	190	200	5.012	
	INITIAL 24.63	rer	DGM READINGS (L)	FINAL		5.006	1904	2000	5.012	
	BAROMETRIC PRESSURE (in Hg):	30B DRY GAS METER	DG	INITIAL		0.000	000	2000	0.000	
	ETRIC PRESS	30B	DGM TEMP.	(°F)		61	2	5	59	
	BARON		FLOW	RATE (LPM)		-	-	-	-	
	30B-1B 0.9965							_		
	METER ID #: REFERENCE METER Y:		(m³)	NET (V _{cr} )		0.0050	0.0052	7000	0.0050	
	REFEREN	E METER	DGM READINGS (m³)	FINAL		12.0504	12 0556	2:0330	12.0606	
		REFERENCE METER	DG	INITIAL		12.0454	12.0504	10000	12.0556	
	6/30/2016 ss		DGM TEMP.	(°F)		99	99	3	59	
	DATE: OPERATOR:			RUN #		<del>-</del>		4	ဧ	

0.20% PRE-TEST CALIBRATION FACTOR, Y = DIFFERENCE = AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

30B-1 Post Cal 6.30.16

(<2%)

Project PC16-0031: Huntington Unit

## APEX INSTRUMENTS REFERENCE METER VERIFICATION USING SHINAGAWA WET-TEST METER W-NK-1A 2-POINT METRIC UNITS

	_					,
	nformation	W-NK-1A	541008	1.0006	0.9965	
t	Calibration Meter Information	BA WTM Model #	V WTM Serial #	WTM Gamma	Original 15Pt Gamma	

Calibration Conditions           Date         Time         6-Jan-16         11:45           Barometric Pressure         764         mm Hg           Callbration Technician         EW         SK25-8005211
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

18	¥	mm Hg	K/mm Hg
Factors/Conversions	293	760	0.3858 P
Fa	Std Temp	Std Press	ž.

		T			Flowrate		otd & Cor	-	std)(corr)/				4 27	
			er	-	Flo	1	(Qm(std)(corr.)		) E	_	,		4	
	Results		Dry Gas Meter	Calibration Factor	on Factor		Culterin	٤					0.9939	
				Calibrati		Trom 45 Dt	17 61 11011	8	3			0.9909		
				Temp		Line	rinai		/100-1	ပ္		22		
				Temp		Initial	Initial		(t _{wi} )		ပ		22	
		Meter		Sample		Volume	Volume		> 8			0.025588		
		Calibration Meter		Volume		Final		(VW ₁ )		7		725.681		
				Volume		Initial		(\ww.j)		7		700.093		
42				Meter	2	Fressure	ę	(M-M)	- Janeary	Fascais		220	711	
Calibration Data	Calibration Dat			emp	i	Liliai	7 #	(July)	0	ر		22		
			Tomat	duia	Initial	minai	( +/	/tms/	ç	٥		22		
	Makes	weter	Cample	Sample	Volume	2000	>		e	111		0.026		
	and and	DIY GAS	Volume		Final		(S	/	_			275.2		
			Volume		Initial		S = S		_			249.2		
			Meter		Pressure		(E)		mm H ₂ O			-73		
	Run Time				Elapsed		<u></u>				(	9		

1	
	0.9963
	1.0014
	22
	22
	0.012981
	738.662
	725.681
	200
	22
	22
	0.0131
	288.3
	275.2
	-30
	24

0.54

must be < 1.5%

must be < 1.5%

0.51%

Variation

l certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using a Wet Test Meter, which in turn was calibrated using the American Bell Prover #3785, certificate #F107, which is traceable to the National Bureau of Standards (N.I.S.T.).

Signature Charles and Charles (N

Date 1/6/1/1



Office (303) 495-3936 Toll Free (800) 984-9883 Fax (888) 605-0243 www.stacktest.us

### RE: Certification of Air Emission Testing Body (AETB) Conformance

To Whom it May Concern:

This letter is to confirm that Emissions Measurement Company LLC ("EMCo") is an Air Emission Testing Body (AETB) operating in conformance with ASTM D7036-04, as required by 40 CFR Part 75, Appendix A §6.1.2. The table below lists the EPA Reference Methods for which each listed Project Manager is a Qualified Individual and other relevant information required by (as applicable) 40 CFR Part 75.59(a)(15), 40 CFR Part 75.59(b)(6) and 40 CFR Part 75.59(d)(4).

Emissions Measurement Company (800) 984-9883 AETB Qualified Individual Information								
QI Name	QI Email	Exam*	Exam Date	Exam Provider	Provider Email			
Andrew Bruning	abruning@stacktest.us	SES Group 1 SES Group 2 SES Group 3	6/12/2014 9/18/2015 6/12/2015	SES	QSTIprogram@gmail.com			
		EPA Method 30B	1/16/2015*	Ohio-Lumex	andrew.mertz@ohiolumex.com			
Mike Corrigan	mcorrigan@stacktest.us	SES Group 1 SES Group 3	4/1/2015	SES	QSTIprogram@gmail.com			
Craig Kormylo	ckormylo@stacktest.us	SES Group 1 SES Group 3	2/5/2016	SES	QSTIprogram@gmail.com			
		EPA Method 30B	1/16/2015*	Ohio-Lumex	andrew.mertz@ohiolumex.com			
Matthew Parks	mparks@stacktest.us	SES Group 1 SES Group 2 SES Group 3	2/5/2016 9/18/2015 2/5/2016	SES	QSTIprogram@gmail.com			

^{*}The Source Evaluation Society (SES) Group 1 Exam includes EPA Reference Methods 1, 1A, 2, 2A, 2C, 2D, 2F, 2G, 2H, 3, 3B, 4, 5, 5A, 5B, 5D, 5E, 5F, 5I, 17, 19, 201A and 202. The SES Group 2 Exam includes EPA Reference Methods 1, 2, 3, 4, 3B, 6, 6A, 6B, 7, 7C, 7D, 8, 11,13A, 13B, 15A, 16A, 19, 26, 26A and 202. The SES Group 3 Exam includes EPA Reference Methods 3A, 6C, 7E, 10, 10B, 20, 25A, 40 CFR Part 60 Performance Specifications 2 – 8, 15 and 40 CFR Part 75. Initial 30B training provided by Ohio-Lumex; refresher exam administered by EMCo once every five years.

Please feel free to contact me with any questions regarding the above.

Matthew Parks
Technical Director